Cite the Following Article
Low-temperature solution growth of ZnO nanotube arrays
Ki-Woong Chae, Qifeng Zhang, Jeong Seog Kim, Yoon-Ha Jeong and Guozhong Cao
Beilstein J. Nanotechnol. 2010, 1, 128–134.
https://doi.org/10.3762/bjnano.1.15
How to Cite
Chae, K.-W.; Zhang, Q.; Kim, J. S.; Jeong, Y.-H.; Cao, G. Beilstein J. Nanotechnol. 2010, 1, 128–134. doi:10.3762/bjnano.1.15
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Oke-Altuntas, F.; Saritan, S.; Colak, H. The effect of seed layer cycles on the structural, optical, and morphological properties of ZnO nanorods. Microscopy research and technique 2024, 87, 2154–2170. doi:10.1002/jemt.24593
- Porrawatkul, P.; Pimsen, R.; Kuyyogsuy, A.; Rattanaburi, P.; Nuengmatcha, P. Morphology-dependent photocatalytic performance of ZnO nanostructures in organic dye and antibiotic degradation. International Journal of Environmental Science and Technology 2024, 21, 7397–7414. doi:10.1007/s13762-024-05530-x
- Giasari, A. S.; Maharani Muharam, A. P.; Syampurwadi, A.; Dedi; Eddy, D. R.; Primadona, I. Morphological effect of one-dimensional ZnO nanostructures on the photocatalytic activity. Journal of Physics and Chemistry of Solids 2023, 176, 111259. doi:10.1016/j.jpcs.2023.111259
- Torkamani, R.; Aslibeiki, B.; Naghshara, H.; Darbandi, M. Structural and optical properties of ZnO nanorods: The effect of concentration and pH of the growth solution. Optical Materials 2022, 127, 112295. doi:10.1016/j.optmat.2022.112295
- Gerbreders, V.; Krasovska, M.; Mihailova, I.; Sledevskis, E.; Ogurcovs, A.; Tamanis, E.; Auksmuksts, V.; Bulanovs, A.; Mizers, V. Morphology Influence on Wettability and Wetting Dynamics of ZnO Nanostructure Arrays. Latvian Journal of Physics and Technical Sciences 2022, 59, 30–43. doi:10.2478/lpts-2022-0004
- Gerbreders, V.; Krasovska, M.; Mihailova, I.; Ogurcovs, A.; Sledevskis, E.; Gerbreders, A.; Tamanis, E.; Kokina, I.; Plaksenkova, I. Nanostructure-based electrochemical sensor: Glyphosate detection and the analysis of genetic changes in rye DNA. Surfaces and Interfaces 2021, 26, 101332. doi:10.1016/j.surfin.2021.101332
- Thulasi, K. M.; Manikkoth, S. T.; Paravannoor, A.; Palantavida, S.; Bhagiyalakshmi, M.; Vijayan, B. K. Facile synthesis of TNT-VO2(M) nanocomposites for high performance supercapacitors. Journal of Electroanalytical Chemistry 2020, 878, 114644. doi:10.1016/j.jelechem.2020.114644
- Evarestov, R. A. Binary Oxides of Transition Metals: ZnO, TiO\(_2\), ZrO\(_2\), HfO\(_2\). NanoScience and Technology; Springer International Publishing, 2020; pp 255–451. doi:10.1007/978-3-030-42994-2_5
- Paiman, S.; Ling, T. H.; Husham, M.; Sagadevan, S. Significant effect on annealing temperature and enhancement on structural, optical and electrical properties of zinc oxide nanowires. Results in Physics 2020, 17, 103185. doi:10.1016/j.rinp.2020.103185
- Abdulrahman, A. F.; Ahmed, S. M.; Ahmed, N. M.; Almessiere, M. A. Enhancement of ZnO Nanorods Properties Using Modified Chemical Bath Deposition Method: Effect of Precursor Concentration. Crystals 2020, 10, 386. doi:10.3390/cryst10050386
- Gerbreders, V.; Krasovska, M.; Sledevskis, E.; Gerbreders, A.; Mihailova, I.; Tamanis, E.; Ogurcovs, A. Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm 2020, 22, 1346–1358. doi:10.1039/c9ce01556f
- Hashim, M. S.; Khaleel, R. S. Fabrication of ZnO sensor to measure pressure, humidity and sense gases at room temperature by using rapid breakdown anodization method. kuwait journal of science 2020, 47.
- Zahiri, M.; Afarani, S.; Arabi, A. M. Synthesis of zinc oxide and zinc oxide/zinc sulfide nano composite via solution combustion route. Materials Research Express 2020, 6, 1250g5. doi:10.1088/2053-1591/ab6806
- Zahiri, M.; Afarani, S.; Arabi, A. M. Combustion Synthesis of ZnO/ZnS Nanocomposite Phosphors. Journal of fluorescence 2019, 29, 1227–1239. doi:10.1007/s10895-019-02434-9
- Shahzad, N.; Shah, Z.; Shahzad, M. I.; Ahmad, K.; Pugliese, D. Effect of seed layer on the performance of ZnO nanorods-based photoanodes for dye-sensitized solar cells. Materials Research Express 2019, 6, 105523. doi:10.1088/2053-1591/ab3a61
- Huang, B.-R.; Chu, J. P.; Hsu, C.-L.; Greene, J. E.; Chen, Y.-S.; Chang, C.-H. Improving the optical and crystal properties of ZnO nanotubes via a metallic glass quantum dot underlayer. Journal of Materials Chemistry C 2019, 7, 5163–5171. doi:10.1039/c9tc00085b
- Gerbreders, V.; Krasovska, M.; Mihailova, I.; Ogurcovs, A.; Sledevskis, E.; Gerbreders, A.; Tamanis, E.; Kokina, I.; Plaksenkova, I. ZnO nanostructure-based electrochemical biosensor for Trichinella DNA detection. Sensing and Bio-Sensing Research 2019, 23, 100276. doi:10.1016/j.sbsr.2019.100276
- Tudose, I. V.; Vrinceanu, N.; Pachiu, C.; Bucur, S.; Pascariu, P.; Rusen, L.; Koudoumas, E.; Suchea, M. P. Nanostructured ZnO-based materials for biomedical and environmental applications. Functional Nanostructured Interfaces for Environmental and Biomedical Applications; Elsevier, 2019; pp 285–305. doi:10.1016/b978-0-12-814401-5.00011-6
- Krasovska, M.; Gerbreders, V.; Mihailova, I.; Ogurcovs, A.; Sledevskis, E.; Gerbreders, A.; Sarajevs, P. ZnO-nanostructure-based electrochemical sensor: Effect of nanostructure morphology on the sensing of heavy metal ions. Beilstein journal of nanotechnology 2018, 9, 2421–2431. doi:10.3762/bjnano.9.227
- Reddeppa, M.; Park, B.-G.; Kim, M.-D.; Peta, K. R.; Chinh, N. D.; Kim, D.; Kim, S.-G.; Murali, G. H2, H2S gas sensing properties of rGO/GaN nanorods at room temperature: Effect of UV illumination. Sensors and Actuators B: Chemical 2018, 264, 353–362. doi:10.1016/j.snb.2018.03.018