The description of friction of silicon MEMS with surface roughness: virtues and limitations of a stochastic Prandtl–Tomlinson model and the simulation of vibration-induced friction reduction

W. Merlijn van Spengen, Viviane Turq and Joost W. M. Frenken
Beilstein J. Nanotechnol. 2010, 1, 163–171. https://doi.org/10.3762/bjnano.1.20

Cite the Following Article

The description of friction of silicon MEMS with surface roughness: virtues and limitations of a stochastic Prandtl–Tomlinson model and the simulation of vibration-induced friction reduction
W. Merlijn van Spengen, Viviane Turq and Joost W. M. Frenken
Beilstein J. Nanotechnol. 2010, 1, 163–171. https://doi.org/10.3762/bjnano.1.20

How to Cite

van Spengen, W. M.; Turq, V.; Frenken, J. W. M. Beilstein J. Nanotechnol. 2010, 1, 163–171. doi:10.3762/bjnano.1.20

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Oliveira, E.; Strassner, J.; Doering, C.; Fouckhardt, H. Reflectance anisotropy spectroscopy (RAS) for in-situ identification of roughness morphologies evolving during reactive ion etching (RIE). Applied Surface Science 2023, 611, 155769. doi:10.1016/j.apsusc.2022.155769
  • Jain, R.; Ginot, F.; Berner, J.; Bechinger, C.; Krüger, M. Two step micro-rheological behavior in a viscoelastic fluid. The Journal of chemical physics 2021, 154, 184904. doi:10.1063/5.0048320
  • Claerbout, V. E. P.; Polcar, T.; Nicolini, P. Superlubricity achieved for commensurate sliding: MoS2 frictional anisotropy in silico. Computational Materials Science 2019, 163, 17–23. doi:10.1016/j.commatsci.2019.03.019
  • Gkouzou, A.; Kokorian, J.; Janssen, G. C. A. M.; van Spengen, W. Friction and dynamically dissipated energy dependence on temperature in polycrystalline silicon MEMS devices. Microsystem Technologies 2017, 24, 1899–1907. doi:10.1007/s00542-017-3575-6
  • Kokorian, J.; van Spengen, W. M. Improved analysis and visualization of friction loop data : unraveling the energy dissipation of meso-scale stick–slip motion. Measurement Science and Technology 2017, 28, 115011. doi:10.1088/1361-6501/aa870a
  • Gkouzou, A.; Kokorian, J.; Janssen, G. C. A. M.; van Spengen, W. Controlling adhesion between multi-asperity contacting surfaces in MEMS devices by local heating. Journal of Micromechanics and Microengineering 2016, 26, 095020. doi:10.1088/0960-1317/26/9/095020
  • Lu, R.; Zhang, H.; Komada, S.; Mitsuya, Y.; Fukuzawa, K.; Itoh, S. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films. Applied Surface Science 2014, 320, 102–111. doi:10.1016/j.apsusc.2014.09.083
  • Zubelewicz, A. Liquid-liquid-solid transition in viscoelastic liquids. Scientific reports 2013, 3, 1323. doi:10.1038/srep01323
  • Obermair, C.; Kress, M.; Wagner, A.; Schimmel, T. Reversible mechano-electrochemical writing of metallic nanostructures with the tip of an atomic force microscope. Beilstein journal of nanotechnology 2012, 3, 824–830. doi:10.3762/bjnano.3.92
  • Huang, C.; Moosmann, M.; Jin, J.; Heiler, T.; Walheim, S.; Schimmel, T. Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers. Beilstein journal of nanotechnology 2012, 3, 620–628. doi:10.3762/bjnano.3.71
  • Krim, J. Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Advances in Physics 2012, 61, 155–323. doi:10.1080/00018732.2012.706401
Other Beilstein-Institut Open Science Activities