Cite the Following Article
Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles
Ulf Wiedwald, Luyang Han, Johannes Biskupek, Ute Kaiser and Paul Ziemann
Beilstein J. Nanotechnol. 2010, 1, 24–47.
https://doi.org/10.3762/bjnano.1.5
How to Cite
Wiedwald, U.; Han, L.; Biskupek, J.; Kaiser, U.; Ziemann, P. Beilstein J. Nanotechnol. 2010, 1, 24–47. doi:10.3762/bjnano.1.5
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Crisan, O.; Crisan, A. D. High Magnetic Performance in MnGa Nanocomposite Magnets. Nanomaterials (Basel, Switzerland) 2024, 14, 1245. doi:10.3390/nano14151245
- Keshta, B. E.; Gemeay, A. H.; Kumar Sinha, D.; Elsharkawy, S.; Hassan, F.; Rai, N.; Arora, C. State of the art on the magnetic iron oxide Nanoparticles: Synthesis, Functionalization, and applications in wastewater treatment. Results in Chemistry 2024, 7, 101388. doi:10.1016/j.rechem.2024.101388
- Patra, K.; Sengupta, A.; Mittal, V.; Valsala, T. Emerging functionalized magnetic nanoparticles: from synthesis to nuclear fuel cycle application: where do we stand after two decade?. Materials Today Sustainability 2023, 24, 100489. doi:10.1016/j.mtsust.2023.100489
- Crisan, O.; Crisan, A. D. Remarkable Magnetic Properties in a Mn73.6Ga26.4 Alloy Produced via Out-of-Equilibrium Method. Nanomaterials (Basel, Switzerland) 2023, 13, 3014. doi:10.3390/nano13233014
- Crisan, A. D.; Crisan, O. Novel Rare Earth (RE)-Free Nanocomposite Magnets Derived from L10-Phase Systems. Nanomaterials (Basel, Switzerland) 2023, 13, 912. doi:10.3390/nano13050912
- Qiu, C.; Odarchenko, Y.; Lezcano-Gonzalez, I.; Meng, Q.; Slater, T.; Xu, S.; Beale, A. M. Visualising Co nanoparticle aggregation and encapsulation in Co/TiO2 catalysts and its mitigation through surfactant residues. Journal of Catalysis 2023, 419, 58–67. doi:10.1016/j.jcat.2023.02.002
- Arsene, M.-L.; Raut, I.; Calin, M.; Jecu, M.-L.; Doni, M.; Gurban, A.-M. Versatility of Reverse Micelles: From Biomimetic Models to Nano (Bio)Sensor Design. Processes 2021, 9, 345. doi:10.3390/pr9020345
- Crisan, O.; Dan, I.; Palade, P.; Crisan, A.; Leca, A.; Pantelica, A. Magnetic Phase Coexistence and Hard-Soft Exchange Coupling in FePt Nanocomposite Magnets. Nanomaterials (Basel, Switzerland) 2020, 10, 1618. doi:10.3390/nano10081618
- Decarolis, D.; Odarchenko, Y.; Herbert, J. J.; Qiu, C.; Longo, A.; Beale, A. M. Identification of the key steps in the self-assembly of homogeneous gold metal nanoparticles produced using inverse micelles. Physical chemistry chemical physics : PCCP 2019, 22, 18824–18834. doi:10.1039/c9cp03473k
- Liang, K.; Hui, L. S.; Turak, A. Probing the multi-step crystallization dynamics of micelle templated nanoparticles: structural evolution of single crystalline γ-Fe2O3. Nanoscale 2019, 11, 9076–9084. doi:10.1039/c9nr00148d
- Bera, A.; Banerjee, S.; Bhattacharya, A.; Tiwari, N.; Jha, S. N.; Bhattacharyya, D. Morphology, Stability, Structure, and CO2–Surface Chemistry of Micelle Nanolithographically Prepared Two-Dimensional Arrays of Core–Shell Fe–Pd Multicomponent Nanoparticles. The Journal of Physical Chemistry C 2018, 122, 26528–26542. doi:10.1021/acs.jpcc.8b09162
- Efremova, M. V.; Nalench, Y. A.; Myrovali, E.; Garanina, A. S.; Grebennikov, I. S.; Gifer, P. K.; Abakumov, M. A.; Spasova, M.; Angelakeris, M.; Savchenko, A. G.; Farle, M.; Klyachko, N. L.; Majouga, A. G.; Wiedwald, U. Size-selected Fe3O4-Au hybrid nanoparticles for improved magnetism-based theranostics. Beilstein journal of nanotechnology 2018, 9, 2684–2699. doi:10.3762/bjnano.9.251
- Ahmad, I.; Siddiqui, W. A.; Qadir, S.; Ahmad, T. Synthesis and characterization of molecular imprinted nanomaterials for the removal of heavy metals from water. Journal of Materials Research and Technology 2018, 7, 270–282. doi:10.1016/j.jmrt.2017.04.010
- Park, G.; Oh, I.-H.; Park, J. M.; Jung, J.; You, C.-Y.; Kim, J.-S.; Kim, Y.-H.; Jung, J. H.; Hur, N.; Kim, Y.; Kim, J. Y.; Hong, C. S.; Kim, K.-Y. Solvent-dependent self-assembly of two dimensional layered perovskite (C 6 H 5 CH 2 CH 2 NH 3 ) 2 MCl 4 (M = Cu, Mn) thin films in ambient humidity. Scientific reports 2018, 8, 4661. doi:10.1038/s41598-018-23012-2
- Husnain, S. M.; Um, W.; Woojin-Lee; Chang, Y.-S. Magnetite-based adsorbents for sequestration of radionuclides: a review. RSC advances 2018, 8, 2521–2540. doi:10.1039/c7ra12299c
- Wang, F. Z.; Salikhov, R.; Spasova, M.; Liébana-Viñas, S.; Bran, C.; Chen, Y.-S.; Vázquez, M.; Farle, M.; Wiedwald, U. Doubling of the magnetic energy product in ferromagnetic nanowires at ambient temperature by capping their tips with an antiferromagnet. Nanotechnology 2017, 28, 295402. doi:10.1088/1361-6528/aa77b7
- Zhao, G.; Wei, X.; Wang, D. Macromolecular Therapeutics: Development and Delivery Engineering. Neuroimmune Pharmacology; Springer International Publishing, 2016; pp 869–883. doi:10.1007/978-3-319-44022-4_51
- Meyer, A.; Franz, N.; Oepen, H. P.; Perlich, J.; Carbone, G.; Metzger, T. H. In situ grazing-incidence small-angle X-ray scattering observation of block-copolymer templated formation of magnetic nanodot arrays and their magnetic properties. Nano Research 2016, 10, 456–471. doi:10.1007/s12274-016-1305-5
- Ponomarova, S. O.; Tatarenko, V. A.; Odnosum, V. V.; Ponomarov, O. P.; Koval, Y. M. Size effects in parameters of both interatomic exchange interactions in Fe-Pt alloy nanoparticles and their superparamagnetism. Journal of Nanoparticle Research 2016, 18, 213. doi:10.1007/s11051-016-3525-8
- Hu, K.; Tao, L.; Liu, D.; Huo, J.; Wang, S. Sulfur-Doped Fe/N/C Nanosheets as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS applied materials & interfaces 2016, 8, 19379–19385. doi:10.1021/acsami.6b02078