Supporting Information
Supporting Information File 1: Additional experimental data. | ||
Format: PDF | Size: 473.0 KB | Download |
Cite the Following Article
Enhanced inhibition of influenza virus infection by peptide–noble-metal nanoparticle conjugates
Zaid K. Alghrair, David G. Fernig and Bahram Ebrahimi
Beilstein J. Nanotechnol. 2019, 10, 1038–1047.
https://doi.org/10.3762/bjnano.10.104
How to Cite
Alghrair, Z. K.; Fernig, D. G.; Ebrahimi, B. Beilstein J. Nanotechnol. 2019, 10, 1038–1047. doi:10.3762/bjnano.10.104
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.2 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Zhu, Y.; Wei, L.; Zwygart, A. C.-A.; Gaínza, P.; Khac, Q. O.; Olgiati, F.; Kurum, A.; Tang, L.; Correia, B.; Tapparel, C.; Stellacci, F. A Synthetic Multivalent Lipopeptide Derived from Pam3CSK4 with Irreversible Influenza Inhibition and Immuno-Stimulating Effects. Small (Weinheim an der Bergstrasse, Germany) 2024, 20, e2307709. doi:10.1002/smll.202307709
- Sharma, H. N. CELL-PENETRATING PEPTIDES NANO-CONJUGATED WITH METALLIC NANOPARTICLE FOR THE DEVELOPMENT OF THERAPEUTIC AND OR PROPHYLACTIC AGENTS AGAINST RESPIRATORY SYNCYTIAL VIRUS. International Journal of Research -GRANTHAALAYAH 2023, 11. doi:10.29121/granthaalayah.v11.i7.2023.5200
- Homaeigohar, S.; Liu, X.; Elbahri, M. Antiviral polysaccharide and antiviral peptide delivering nanomaterials for prevention and treatment of SARS-CoV-2 caused COVID-19 and other viral diseases. Journal of controlled release : official journal of the Controlled Release Society 2023, 358, 476–497. doi:10.1016/j.jconrel.2023.05.010
- Monti, A.; Vitagliano, L.; Caporale, A.; Ruvo, M.; Doti, N. Targeting Protein-Protein Interfaces with Peptides: The Contribution of Chemical Combinatorial Peptide Library Approaches. International journal of molecular sciences 2023, 24, 7842. doi:10.3390/ijms24097842
- Srinivash, M.; Krishnamoorthi, R.; Mahalingam, P. U.; Malaikozhundan, B.; Bharathakumar, S.; Gurushankar, K.; Dhanapal, K.; Karuppa Samy, K.; Babu Perumal, A. Nanomedicine for drug resistant pathogens and COVID-19 using mushroom nanocomposite inspired with bacteriocin - A review. Inorganic chemistry communications 2023, 152, 110682. doi:10.1016/j.inoche.2023.110682
- Chakraborty, S.; Chauhan, A. Fighting the flu: a brief review on anti-influenza agents. Biotechnology & genetic engineering reviews 2023, 40, 858–909. doi:10.1080/02648725.2023.2191081
- Jabeen, M.; Biswas, P.; Islam, M. T.; Paul, R. Antiviral Peptides in Antimicrobial Surface Coatings-From Current Techniques to Potential Applications. Viruses 2023, 15, 640. doi:10.3390/v15030640
- Azab, W. Antiviral potential of nanomaterials: The fight against viruses. Antimicrobial Activity of Nanoparticles; Elsevier, 2023; pp 101–132. doi:10.1016/b978-0-12-821637-8.00005-5
- Rasmi, Y.; Kırboğa, K. K.; Khan, J.; Gupta, E.; Mostafa, F.; Yallapu, M. M.; Pilaquinga, F. Gold nanoparticle-based strategies against SARS-CoV-2: A review. REVIEWS ON ADVANCED MATERIALS SCIENCE 2023, 62. doi:10.1515/rams-2023-0105
- Balakrishnan, A. J.; Somasundaran, A. K.; Janardhanan, P.; Pilankatta, R. Peptides with antiviral activities. Antimicrobial Peptides; Elsevier, 2023; pp 219–235. doi:10.1016/b978-0-323-85682-9.00002-7
- Yakoubi, A.; Dhafer, C. E. B. Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19. Plasmonics (Norwell, Mass.) 2022, 18, 311–347. doi:10.1007/s11468-022-01754-0
- Sahihi, M.; Faraudo, J. Computer Simulation of the Interaction between SARS-CoV-2 Spike Protein and the Surface of Coinage Metals. Langmuir : the ACS journal of surfaces and colloids 2022, 38, 14673–14685. doi:10.1021/acs.langmuir.2c02120
- Hada, A.-M.; Burduja, N.; Abbate, M.; Stagno, C.; Caljon, G.; Maes, L.; Micale, N.; Cordaro, M.; Scala, A.; Mazzaglia, A.; Piperno, A. Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core-shell nanoarchitectures. Beilstein journal of nanotechnology 2022, 13, 1361–1369. doi:10.3762/bjnano.13.112
- Rauf, A.; Abu-Izneid, T.; Khalil, A. A.; Hafeez, N.; Olatunde, A.; Rahman, M.; Semwal, P.; Al-Awthan, Y. S.; Bahattab, O. S.; Khan, I. N.; Khan, M. A.; Sharma, R. Nanoparticles in clinical trials of COVID-19: An update. International journal of surgery (London, England) 2022, 104, 106818. doi:10.1016/j.ijsu.2022.106818
- Kar, B.; Pradhan, D.; Mishra, P.; Bhuyan, S. K.; Ghosh, G.; Rath, G. Exploring the Potential of Metal Nanoparticles as a Possible Therapeutic Adjunct for Covid-19 Infection. Proceedings of the National Academy of Sciences, India. Section B 2022, 92, 511–521. doi:10.1007/s40011-022-01371-1
- Padhi, S.; Behera, A. Drug Delivery Systems for Respiratory Infections. Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases; Springer Singapore, 2022; pp 523–537. doi:10.1007/978-981-16-4392-7_22
- Ayipo, Y. O.; Bakare, A. A.; Badeggi, U. M.; Jimoh, A. A.; Lawal, A.; Mordi, M. N. Recent advances on therapeutic potentials of gold and silver nanobiomaterials for human viral diseases. Current research in chemical biology 2022, 2, 100021. doi:10.1016/j.crchbi.2022.100021
- Pereira, D.; Carreira, T. S.; Alves, N.; Sousa, Â.; Valente, J. F. A. Metallic Structures: Effective Agents to Fight Pathogenic Microorganisms. International journal of molecular sciences 2022, 23, 1165. doi:10.3390/ijms23031165
- Backx, B. P. Potential role of nanotechnology in the treatment of influenza and hepatitis viruses. Nanotechnological Applications in Virology; Elsevier, 2022; pp 195–218. doi:10.1016/b978-0-323-99596-2.00010-8
- Gonzalez-Ortega, O. Chapter 16 - Antivirals based on nanomaterials against SARS-CoV-2. Biomedical Innovations to Combat COVID-19; Elsevier, 2022; pp 271–305. doi:10.1016/b978-0-323-90248-9.00012-7