Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

Maike Schnucklake, László Eifert, Jonathan Schneider, Roswitha Zeis and Christina Roth
Beilstein J. Nanotechnol. 2019, 10, 1131–1139. https://doi.org/10.3762/bjnano.10.113

Cite the Following Article

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries
Maike Schnucklake, László Eifert, Jonathan Schneider, Roswitha Zeis and Christina Roth
Beilstein J. Nanotechnol. 2019, 10, 1131–1139. https://doi.org/10.3762/bjnano.10.113

How to Cite

Schnucklake, M.; Eifert, L.; Schneider, J.; Zeis, R.; Roth, C. Beilstein J. Nanotechnol. 2019, 10, 1131–1139. doi:10.3762/bjnano.10.113

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 743.2 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Tesnim, D.; Díez, A. M.; Ben Amor, H.; Angeles Sanromán, M.; Pazos, M. Synthesis and characterization of eco-friendly cathodic electrodes incorporating nano Zero-Valent iron (NZVI) for the electro-fenton treatment of pharmaceutical wastewater. Chemical Engineering Journal 2024, 502, 158099. doi:10.1016/j.cej.2024.158099
  • Suryana, N.; Mudaim, S.; Nurhilal, O.; Hidayat, S. Study of the Activator Effects on the Specific Surface Area of Porous Carbon and its Performance as Lithium-Sulfur Battery Cathode. Key Engineering Materials 2024, 989, 3–10. doi:10.4028/p-b9daim
  • Maiti, P.; Meikap, B. Mechanism and adsorptive removal of Pb (II) by torrefied/pyrolyzed functionalized bio-adsorbent in batch application and life cycle assessment. Separation and Purification Technology 2024, 354, 129333. doi:10.1016/j.seppur.2024.129333
  • Bahadur, R.; Wijerathne, B.; Vinu, A. Multiple Heteroatom Doped Nanoporous Biocarbon for Supercapacitor and Zinc-ion Capacitor. ChemSusChem 2024, 17, e202400999. doi:10.1002/cssc.202400999
  • Dong, Z.; Chen, X.; Li, R.; Jiang, L.; Gou, G.; Ma, X. Hierarchical carbon chain network 'armor' escorts long-term cycling stability for vanadium redox flow batteries. Journal of Power Sources 2024, 611, 234785. doi:10.1016/j.jpowsour.2024.234785
  • Gupta, K.; Sharma, B.; Garg, V.; Neelratan, P. P.; Kumar, V.; Kumar, D.; Sharma, S. K. Enhanced photocatalytic degradation of methylene blue and methyl orange using biogenic ZnO NPs synthesized via Vachellia nilotica (Babool) leaves extract. Hybrid Advances 2024, 5, 100160. doi:10.1016/j.hybadv.2024.100160
  • Mehra, S.; Khandare, S.; Singh, K.; Chaudhary, D.; Kumar, A. Ionic liquid capped white luminescent carbon dots: application in sensing and bioimaging. Materials Today Chemistry 2023, 29, 101437. doi:10.1016/j.mtchem.2023.101437
  • Thielke, M.; Sobrido, A. J. doi:10.1002/9781119817741.ch9
  • Thielke, M. W.; Tian, G.; Jorge Sobrido, A. Sustainable electrodes for the next generation of redox flow batteries. Journal of Physics: Materials 2022, 5, 24004–024004. doi:10.1088/2515-7639/ac5753
  • Wu, J.; Liangcai, W.; Ma, H.; Zhou, J. Investigation of element migration characteristics and product properties during biomass pyrolysis: a case study of pine cones rich in nitrogen. RSC advances 2021, 11, 34795–34805. doi:10.1039/d1ra06652h
  • Schnucklake, M.; Cheng, M.; Maleki, M.; Roth, C. A mini-review on decorating, templating of commercial and electrospinning of new porous carbon electrodes for vanadium redox flow batteries. Journal of Physics: Materials 2021, 4, 032007. doi:10.1088/2515-7639/abf1a9
  • Köble, K.; Eifert, L.; Bevilacqua, N.; Fahy, K. F.; Bazylak, A.; Zeis, R. Synchrotron X-Ray radiography of vanadium redox flow batteries - Time and spatial resolved electrolyte flow in porous carbon electrodes. Journal of Power Sources 2021, 492, 229660. doi:10.1016/j.jpowsour.2021.229660
  • Chaudhari, S.; Cho, K. Y.; Joo, S.; An, B.; Lee, S.; Yun, S.; Lee, G.; Park, J.; Shon, M.; Park, Y.-I. Layer-by-layer of graphene oxide-chitosan assembly on PVA membrane surface for the pervaporation separation of water-isopropanol mixtures. Korean Journal of Chemical Engineering 2021, 38, 411–421. doi:10.1007/s11814-020-0726-8
  • Xie, L.; Jin, Z.; Dai, Z.; Yulong, C.; Jiang, X.; Wang, H. Porous carbons synthesized by templating approach from fluid precursors and their applications in environment and energy storage: A review. Carbon 2020, 170, 100–118. doi:10.1016/j.carbon.2020.07.034
  • Li, Q.; Bai, A.; Xue, Z.; Zheng, Y.; Sun, H. Nitrogen and sulfur co-doped graphene composite electrode with high electrocatalytic activity for vanadium redox flow battery application. Electrochimica Acta 2020, 362, 137223. doi:10.1016/j.electacta.2020.137223
  • Schnucklake, M.; Kaßner, L.; Mehring, M.; Roth, C. Porous carbon─carbon composite electrodes for vanadium redox flow batteries synthesized by twin polymerization. RSC advances 2020, 10, 41926–41935. doi:10.1039/d0ra07741k
  • Chen, L.-l.; Yang, H.; Jing, M.; Han, C.; Chen, F.; Hu, X.-y.; Yuan, W.-y.; Yao, S.; Shen, X. A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes. Beilstein journal of nanotechnology 2019, 10, 2229–2237. doi:10.3762/bjnano.10.215
Other Beilstein-Institut Open Science Activities