Supporting Information
Supporting Information File 1: The motion of a Janus UCNP capsule motor in 1% H2O2 solution. | ||
Format: MOV | Size: 185.2 KB | Download |
Supporting Information File 2: The motion of a Janus UCNP capsule motor in 3% H2O2 solution. | ||
Format: MOV | Size: 189.1 KB | Download |
Supporting Information File 3: The motion of a Janus UCNP capsule motor in 5% H2O2 solution. | ||
Format: MOV | Size: 159.3 KB | Download |
Supporting Information File 4: The motion of a Janus UCNP capsule motor in 10% H2O2 solution. | ||
Format: MOV | Size: 221.3 KB | Download |
Supporting Information File 5: The motion of a Janus UCNP capsule motor without luminescence quenching in 5% H2O2. | ||
Format: MOV | Size: 30.3 KB | Download |
Supporting Information File 6: The on–off luminescence detection of TNT using a Janus UCNP capsule motor. | ||
Format: MOV | Size: 165.3 KB | Download |
Cite the Following Article
Janus-micromotor-based on–off luminescence sensor for active TNT detection
Ye Yuan, Changyong Gao, Daolin Wang, Chang Zhou, Baohua Zhu and Qiang He
Beilstein J. Nanotechnol. 2019, 10, 1324–1331.
https://doi.org/10.3762/bjnano.10.131
How to Cite
Yuan, Y.; Gao, C.; Wang, D.; Zhou, C.; Zhu, B.; He, Q. Beilstein J. Nanotechnol. 2019, 10, 1324–1331. doi:10.3762/bjnano.10.131
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.2 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Mena-Giraldo, P.; Kaur, M.; Maurizio, S. L.; Mandl, G. A.; Capobianco, J. A. Janus Micromotors for Photophoretic Motion and Photon Upconversion Applications Using a Single Near-Infrared Wavelength. ACS applied materials & interfaces 2024, 16, 4249–4260. doi:10.1021/acsami.3c16454
- Wang, Q.; Yang, S.; Zhang, L. Untethered Micro/Nanorobots for Remote Sensing: Toward Intelligent Platform. Nano-micro letters 2023, 16, 40. doi:10.1007/s40820-023-01261-9
- Feng, J.; Li, X.; Xu, T.; Zhang, X.; Du, X. Photothermal-driven micro/nanomotors: From structural design to potential applications. Acta biomaterialia 2023, 173, 1–35. doi:10.1016/j.actbio.2023.11.018
- Jiang, L.; Liu, X.; Zhao, D.; Guo, J.; Ma, X.; Wang, Y. Intelligent sensing based on active micro/nanomotors. Journal of materials chemistry. B 2023, 11, 8897–8915. doi:10.1039/d3tb01163a
- Jang, B.; Ye, M.; Hong, A.; Wang, X.; Liu, X.; Bae, D.; Puigmartí Luis, J.; Pané, S. Catalytically Propelled Micro‐ and Nanoswimmers. Small Science 2023, 3. doi:10.1002/smsc.202300076
- Chen, G.; Zhu, F.; Gan, A. S.; Mohan, B.; Dey, K. K.; Xu, K.; Huang, G.; Cui, J.; Solovev, A. A.; Mei, Y. Towards the next generation nanorobots. Next Nanotechnology 2023, 2, 100019. doi:10.1016/j.nxnano.2023.100019
- Panda, S. K.; Kherani, N. A.; Debata, S.; Singh, D. P. Bubble-propelled micro/nanomotors: a robust platform for the detection of environmental pollutants and biosensing. Materials Advances 2023, 4, 1460–1480. doi:10.1039/d2ma00798c
- Alabusheva, V. S.; Shilovskikh, V. V.; Bridenko, L. A.; Gurzhiy, V. V.; Skorb, E. V. Synthesis of Catalytic Microswimmers Based on Anisotropic Platinum Sorption on Melamine Barbiturate Supramolecular Structures. Advanced Intelligent Systems 2023, 5. doi:10.1002/aisy.202200436
- Xu, D.; Li, C.; Li, W.; Lin, B.; Lv, R. Recent advances in lanthanide-doped up-conversion probes for theranostics. Frontiers in chemistry 2023, 11, 1036715. doi:10.3389/fchem.2023.1036715
- Cai, L.; Xu, D.; Zhang, Z.; Li, N.; Zhao, Y. Tailoring Functional Micromotors for Sensing. Research (Washington, D.C.) 2023, 6, 0044. doi:10.34133/research.0044
- Liu, W.; Liu, Y.; Li, H.; Nie, H.; Tian, M.; Long, W. Biomedical Micro‐/Nanomotors: Design, Imaging, and Disease Treatment. Advanced Functional Materials 2023, 33. doi:10.1002/adfm.202212452
- Li, X.; Ge, W.; Guo, S.; Bai, J.; Hong, W. Characterization and Application of Supramolecular Junctions. Angewandte Chemie 2023, 135. doi:10.1002/ange.202216819
- Li, X.; Ge, W.; Guo, S.; Bai, J.; Hong, W. Characterization and Application of Supramolecular Junctions. Angewandte Chemie (International ed. in English) 2023, 62, e202216819. doi:10.1002/anie.202216819
- Zhang, Q.; Yan, Y.; Liu, J.; Wu, Y.; He, Q. Supramolecular colloidal motors via chemical self-assembly. Current Opinion in Colloid & Interface Science 2022, 62, 101642. doi:10.1016/j.cocis.2022.101642
- Guo, J.; Li, Y.; Wang, B.; Chen, W.; Chen, S.; Liu, S.; Ma, X.; Guo, J. Self-propelled Janus nanomotor as active probe for detection of pepsinogen by lateral flow immunoassay. Mikrochimica acta 2022, 189, 468. doi:10.1007/s00604-022-05538-5
- Debata, S.; Kherani, N. A.; Panda, S. K.; Singh, D. P. Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium. Journal of materials chemistry. B 2022, 10, 8235–8243. doi:10.1039/d2tb01367c
- Ren, J.; Hu, P.; Ma, E.; Zhou, X.; Wang, W.; Zheng, S.; Wang, H. Enzyme-powered nanomotors with enhanced cell uptake and lysosomal escape for combined therapy of cancer. Applied Materials Today 2022, 27, 101445. doi:10.1016/j.apmt.2022.101445
- Yuan, S.; Wang, J.; Xiang, Y.; Zheng, S.; Wu, Y.; Liu, J.; Zhu, X.; Zhang, Y. Shedding Light on Luminescent Janus Nanoparticles: From Synthesis to Photoluminescence and Applications. Small (Weinheim an der Bergstrasse, Germany) 2022, 18, e2200020. doi:10.1002/smll.202200020
- Gao, Y.; Xiong, Z.; Wang, J.; Tang, J.; Li, D. Light hybrid micro/nano-robots: From propulsion to functional signals. Nano Research 2022, 15, 5355–5375. doi:10.1007/s12274-022-4119-7
- Li, X.; Chen, L.; Cui, D.; Jiang, W.; Han, L.; Niu, N. Preparation and application of Janus nanoparticles: Recent development and prospects. Coordination Chemistry Reviews 2022, 454, 214318. doi:10.1016/j.ccr.2021.214318