Magnetic segregation effect in liquid crystals doped with carbon nanotubes

Danil A. Petrov, Pavel K. Skokov, Alexander N. Zakhlevnykh and Dmitriy V. Makarov
Beilstein J. Nanotechnol. 2019, 10, 1464–1474. https://doi.org/10.3762/bjnano.10.145

Cite the Following Article

Magnetic segregation effect in liquid crystals doped with carbon nanotubes
Danil A. Petrov, Pavel K. Skokov, Alexander N. Zakhlevnykh and Dmitriy V. Makarov
Beilstein J. Nanotechnol. 2019, 10, 1464–1474. https://doi.org/10.3762/bjnano.10.145

How to Cite

Petrov, D. A.; Skokov, P. K.; Zakhlevnykh, A. N.; Makarov, D. V. Beilstein J. Nanotechnol. 2019, 10, 1464–1474. doi:10.3762/bjnano.10.145

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 655.7 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Petrov, D. A.; Chupeev, I. A. Antiferromagnetic liquid-crystal suspensions of goethite nanorods: three mechanisms of magnetic field influence on orientational structure. The European physical journal. E, Soft matter 2024, 47, 54. doi:10.1140/epje/s10189-024-00448-1
  • Petrov, D. A. Liquid-crystal composites of carbon nanotubes in a magnetic field: Bridging continuum theory and a molecular-statistical approach. Physical review. E 2023, 107, 054701. doi:10.1103/physreve.107.054701
  • Sokolchik, D. P.; Makarov, D. V. Macroscopic Helicity of a Suspension of Chiral Magnetic Particles Based on a Nematic Liquid Crystal. Bulletin of the Russian Academy of Sciences: Physics 2023, 87, 353–356. doi:10.3103/s1062873822701222
  • Sokolchik, D. P.; Makarov, D. V. Macroscopic helicity of a suspension of chiral magnetic particles based on nematic liquid crystal. Известия Российской академии наук. Серия физическая 2023, 87, 408–411. doi:10.31857/s0367676522700715
  • Tang, X.; Chang, X.; Zhang, S.; Li, X.; Wang, S.; Meng, F. Self-assembly and magnetorheological performance of Fe3O4-based liquid-crystalline composites. Journal of Molecular Liquids 2023, 369, 120927. doi:10.1016/j.molliq.2022.120927
  • Tang, X.; Chang, X.; Zhang, S.; Wang, S.; Li, X.; Meng, F. Self-assembly of ferroferric oxide liquid-crystalline nanocomposites bearing cholesteryl mesogens and ionic groups. Liquid Crystals 2022, 50, 423–436. doi:10.1080/02678292.2022.2135034
  • Sokolchik, D. P.; Makarov, D. V. Threshold Magnetic Fields in the Untwisted Phase of a Liquid Crystal Suspension of Quadrupole Particles. Bulletin of the Russian Academy of Sciences: Physics 2022, 86, 134–139. doi:10.3103/s1062873822020277
  • Singh, B. P.; Sikarwar, S.; Pandey, K.; Manohar, R.; Depriester, M.; Singh, D. P. Carbon Nanotubes Blended Nematic Liquid Crystal for Display and Electro-Optical Applications. Electronic Materials 2021, 2, 466–481. doi:10.3390/electronicmat2040032
  • Makarov, D. V.; Novikov, A. Shear-induced ferrocholesteric-to-ferronematic transitions in magnetic field. Journal of Magnetism and Magnetic Materials 2021, 532, 167967. doi:10.1016/j.jmmm.2021.167967
  • Lahiri, T.; Pushkar, S.; Poddar, P. Theoretical study on the effect of electric field for carbon nanotubes dispersed in nematic liquid crystal. Physica B: Condensed Matter 2020, 588, 412177. doi:10.1016/j.physb.2020.412177
  • Petrov, D. A. Molecular-statistical theory of ferromagnetic liquid crystal suspensions. Physical review. E 2020, 101, 030701. doi:10.1103/physreve.101.030701
  • Cirtoaje, C.; Petrescu, E. The Influence of Single-Walled Carbon Nanotubes on the Dynamic Properties of Nematic Liquid Crystals in Magnetic Field. Materials (Basel, Switzerland) 2019, 12, 4031. doi:10.3390/ma12244031
Other Beilstein-Institut Open Science Activities