Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering

Petronela Prepelita, Ionel Stavarache, Doina Craciun, Florin Garoi, Catalin Negrila, Beatrice Gabriela Sbarcea and Valentin Craciun
Beilstein J. Nanotechnol. 2019, 10, 1511–1522. https://doi.org/10.3762/bjnano.10.149

Cite the Following Article

Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering
Petronela Prepelita, Ionel Stavarache, Doina Craciun, Florin Garoi, Catalin Negrila, Beatrice Gabriela Sbarcea and Valentin Craciun
Beilstein J. Nanotechnol. 2019, 10, 1511–1522. https://doi.org/10.3762/bjnano.10.149

How to Cite

Prepelita, P.; Stavarache, I.; Craciun, D.; Garoi, F.; Negrila, C.; Sbarcea, B. G.; Craciun, V. Beilstein J. Nanotechnol. 2019, 10, 1511–1522. doi:10.3762/bjnano.10.149

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.1 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Sahoo, A. K.; Au, W.-C.; Pan, C.-L. Characterization of Indium Tin Oxide (ITO) Thin Films towards Terahertz (THz) Functional Device Applications. Coatings 2024, 14, 895. doi:10.3390/coatings14070895
  • Khlayboonme, S. T. Insights into the properties and possible bonding states of radiofrequency-magnetron-sputtered indium tin oxide thin films acquired using ultraviolet–visible spectroscopy data for cost-effective material characterization. Optical Materials 2023, 146, 114523. doi:10.1016/j.optmat.2023.114523
  • Shelemin, A.; Krtous, Z.; Baloukas, B.; Zabeida, O.; Klemberg-Sapieha, J.; Martinu, L. Fabrication of Plasmonic Indium Tin Oxide Nanoparticles by Means of a Gas Aggregation Cluster Source. ACS omega 2023, 8, 6052–6058. doi:10.1021/acsomega.2c08070
  • Shestakov, D. S.; Shishov, A. Y.; Mesh, M. V.; Tumkin, I. I.; Makarov, S. V.; Logunov, L. S. Copper Grid/ITO Transparent Electrodes Prepared by Laser Induced Deposition for Multifunctional Optoelectronic Devices. Bulletin of the Russian Academy of Sciences: Physics 2022, 86, S201–S206. doi:10.3103/s1062873822700691
  • Alnaanah, S. A.; Qatamin, A. H.; Dieterlen, M. K.; Mendes, S. B. Effects of UV treatment on the properties of ultra-thin indium tin oxide films during growth and after deposition by cavity ring-down spectroscopy. Optics Continuum 2022, 1, 2503. doi:10.1364/optcon.476239
  • Masdan, N.; Ali, A. H. Characterization of Electrical, Optical and Topological Properties of ITO Thin Films for Solar Cells Application. Springer Proceedings in Physics; Springer Nature Singapore, 2022; pp 57–63. doi:10.1007/978-981-16-8903-1_6
  • Zhao, M.-J.; Zhang, J.-F.; Huang, J.; Chen, Z.-Z.; Xie, A.; Wu, W.-Y.; Huang, C.-J.; Wuu, D.-S.; Lien, S.-Y.; Zhu, W.-Z. Role of Ambient Hydrogen in HiPIMS-ITO Film during Annealing Process in a Large Temperature Range. Nanomaterials (Basel, Switzerland) 2022, 12, 1995. doi:10.3390/nano12121995
  • Cao, L.; Wang, T.; Ma, K.; Zhang, Z.; Luo, F.; Zhou, H.; Liu, D.; Miao, M.; Luo, B.; Xu, Y. A leaf-like structured ITO conductive transparent thin film from visible to near-infrared region with enhanced stability. Journal of the European Ceramic Society 2022, 42, 2836–2843. doi:10.1016/j.jeurceramsoc.2022.01.056
  • Ali, R.; Hanif, M.; Shah, S. A. B.; Abbas, S. Z.; Karim, M. R. A.; Arshad, M.; Ahmad, S. H. A. Effect of chromium-doping on structure and opto-electronics properties of nanostructured indium tin oxide thin films. Applied Physics A 2022, 128. doi:10.1007/s00339-022-05639-1
  • Zhang, J.-F.; Zhao, M.-J. Tuning the optical and electrical properties of HiPIMS-ITO films by variation of annealing temperature. Journal of Physics: Conference Series 2022, 2276, 12041–012041. doi:10.1088/1742-6596/2276/1/012041
  • Yu, Q.; Huang, G.; Li, G. Influence of Substrate Orientation and Oxygen Partial Pressure on the Morphology, Structure, and Electrical Property of Epitaxial Indium Tin Oxide Films. Crystal Growth & Design 2021, 21, 5621–5630. doi:10.1021/acs.cgd.1c00447
  • Cho, Y.-H.; Raman, V.; Beigtan, M.; Kim, Y.; Kim, H.-K. Solution-Processed Multistacked Tin-Doped Indium Oxide Nanoparticle Conductors for Cost-Effective Thin Film Heaters. ACS Applied Electronic Materials 2021, 3, 2953–2965. doi:10.1021/acsaelm.1c00052
  • Prepelita, P.; Garoi, F.; Craciun, V. Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films. Beilstein journal of nanotechnology 2021, 12, 354–365. doi:10.3762/bjnano.12.29
  • Xin, Y.; Zhang, D.; Li, Z.; Qin, H.; Xiu, J.; Li, Z.; Liu, Y.; Liu, H. Study on the effect of Sn concentration on the structural, optical, and electrical properties of (Al0.55In0.45)2O3:Sn films. New Journal of Chemistry 2021, 45, 4318–4325. doi:10.1039/d0nj06088g
  • Fernández, S. A.; González, J.; Grandal, J.; Braña, A.; Garcia, F.; Borlaf, F.; Gómez-Mancebo, M. Non-treated low temperature indium tin oxide fabricated in oxygen-free environment to low-cost silicon-based solar technology. Vacuum 2021, 184, 109783. doi:10.1016/j.vacuum.2020.109783
  • Huang, G.; Yu, Q.; Kou, S.; Zhai, P.; Li, G. Epitaxial indium tin oxide films deposited on yttrium stabilized zirconia substrate by DC magnetron sputtering. Physica B: Condensed Matter 2021, 601, 412667. doi:10.1016/j.physb.2020.412667
  • Ollotu, E. R.; Nyarige, J. S.; Mlyuka, N. R.; Samiji, M.; Diale, M. Properties of ITO thin films rapid thermally annealed in different exposures of nitrogen gas. Journal of Materials Science: Materials in Electronics 2020, 31, 16406–16413. doi:10.1007/s10854-020-04192-y
  • Gilshtein, E.; Bolat, S.; Sevilla, G. T.; Cabas-Vidani, A.; Clemens, F.; Graule, T.; Tiwari, A. N.; Romanyuk, Y. E. Inkjet‐Printed Conductive ITO Patterns for Transparent Security Systems. Advanced Materials Technologies 2020, 5, 2000369. doi:10.1002/admt.202000369
Other Beilstein-Institut Open Science Activities