Cite the Following Article
Materials nanoarchitectonics at two-dimensional liquid interfaces
Katsuhiko Ariga, Michio Matsumoto, Taizo Mori and Lok Kumar Shrestha
Beilstein J. Nanotechnol. 2019, 10, 1559–1587.
https://doi.org/10.3762/bjnano.10.153
How to Cite
Ariga, K.; Matsumoto, M.; Mori, T.; Shrestha, L. K. Beilstein J. Nanotechnol. 2019, 10, 1559–1587. doi:10.3762/bjnano.10.153
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.5 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Brakat, A.; Zhu, H. 3D-shaped 3D-continuously graphene cellulose (3D2GC) architecture. Nano Research 2024, 17, 6695–6699. doi:10.1007/s12274-024-6634-1
- Eftekhari, K.; Parakhonskiy, B. V.; Grigoriev, D.; Skirtach, A. G. Advances in Nanoarchitectonics: A Review of "Static" and "Dynamic" Particle Assembly Methods. Materials (Basel, Switzerland) 2024, 17, 1051. doi:10.3390/ma17051051
- Rodriguez-Mendez, M. Nanostructured thin films as electrochemical sensors and biosensors for milk analysis. Sensors and Actuators Reports 2023, 6, 100179. doi:10.1016/j.snr.2023.100179
- Brakat, A.; Zhu, H. From Forces to Assemblies: van der Waals Forces-Driven Assemblies in Anisotropic Quasi-2D Graphene and Quasi-1D Nanocellulose Heterointerfaces towards Quasi-3D Nanoarchitecture. Nanomaterials (Basel, Switzerland) 2023, 13, 2399. doi:10.3390/nano13172399
- Ariga, K. Materials Nanoarchitectonics: Collaboration between Chem, Nano and Mat. ChemNanoMat 2023, 9. doi:10.1002/cnma.202300120
- Ariga, K. Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science. Beilstein journal of nanotechnology 2023, 14, 434–453. doi:10.3762/bjnano.14.35
- Martin, C. S.; Kavazoi, H. S.; Furini, L. N.; Alessio, P. Developments on Supramolecular Thin Films to Sensing Applications. Concepts and Design of Materials Nanoarchitectonics; The Royal Society of Chemistry, 2022; pp 304–336. doi:10.1039/9781788019613-00304
- Oliveira, O. N.; Caseli, L.; Ariga, K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chemical reviews 2022, 122, 6459–6513. doi:10.1021/acs.chemrev.1c00754
- Ariga, K. doi:10.1002/9783527828722.ch3
- Chaikittisilp, W.; Yamauchi, Y.; Ariga, K. Material Evolution with Nanotechnology, Nanoarchitectonics, and Materials Informatics: What will be the Next Paradigm Shift in Nanoporous Materials?. Advanced materials (Deerfield Beach, Fla.) 2022, 34, 2107212. doi:10.1002/adma.202107212
- Ariga, K. Nanoarchitectonics. Nanostructure Science and Technology; Springer Singapore, 2021; pp 35–44. doi:10.1007/978-981-16-4189-3_2
- Ariga, K.; Fakhrullin, R. Nanoarchitectonics on living cells. RSC advances 2021, 11, 18898–18914. doi:10.1039/d1ra03424c
- Ariga, K. Nanoarchitectonics at Interfaces for Regulations of Biorelated Phenomena: Small Structures with Big Effects. Small Structures 2021, 2, 2100006. doi:10.1002/sstr.202100006
- Ariga, K. Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. Molecules (Basel, Switzerland) 2021, 26, 1621. doi:10.3390/molecules26061621
- Ariga, K.; Shrestha, L. K. Zero-to-one (or more) nanoarchitectonics: how to produce functional materials from zero-dimensional single-element unit, fullerene. Materials Advances 2021, 2, 582–597. doi:10.1039/d0ma00744g
- Ariga, K.; Shionoya, M. Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. Bulletin of the Chemical Society of Japan 2020, 94, 839–859. doi:10.1246/bcsj.20200362
- Ariga, K. Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. Small Science 2020, 1, 2000032. doi:10.1002/smsc.202000032
- Ariga, K.; Jia, X.; Song, J.; Hill, J. P.; Leong, D. T.; Jia, Y.; Li, J. Nanoarchitectonics beyond Self‐Assembly: Challenges to Create Bio‐Like Hierarchic Organization. Angewandte Chemie (International ed. in English) 2020, 59, 15424–15446. doi:10.1002/anie.202000802
- Ariga, K.; Jia, X.; Song, J.; Hill, J. P.; Leong, D. T.; Jia, Y.; Li, J. Nanoarchitektonik als ein Ansatz zur Erzeugung bioähnlicher hierarchischer Organisate. Angewandte Chemie 2020, 132, 15550–15574. doi:10.1002/ange.202000802
- Soares, A.; Soares, J. C.; Paschoalin, R. T.; da Cruz Rodrigues, V.; Melendez, M. E.; Reis, R. M.; Carvalho, A. L.; Mattoso, L. H. C.; Oliveira, O. N. Immunosensors containing solution blow spun fibers of poly(lactic acid) to detect p53 biomarker. Materials science & engineering. C, Materials for biological applications 2020, 115, 111120. doi:10.1016/j.msec.2020.111120