Cite the Following Article
Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode
Ditty Dixon, Deepu Joseph Babu, Aiswarya Bhaskar, Hans-Michael Bruns, Joerg J. Schneider, Frieder Scheiba and Helmut Ehrenberg
Beilstein J. Nanotechnol. 2019, 10, 1698–1706.
https://doi.org/10.3762/bjnano.10.165
How to Cite
Dixon, D.; Babu, D. J.; Bhaskar, A.; Bruns, H.-M.; Schneider, J. J.; Scheiba, F.; Ehrenberg, H. Beilstein J. Nanotechnol. 2019, 10, 1698–1706. doi:10.3762/bjnano.10.165
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 571.5 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Park, S. H.; Ha, J.; Kim, D. W.; Hwang, C.; Choi, J.-I.; Park, H. S.; Kim, Y. Mesoporous graphite felt electrode prepared via thermal oxidative etching on all-vanadium redox flow batteries. Chemical Engineering Journal 2024, 500, 157238. doi:10.1016/j.cej.2024.157238
- Pan, L.; Guo, Z.; Li, H.; Wang, Y.; Rao, H.; Jian, Q.; Sun, J.; Ren, J.; Wang, Z.; Liu, B.; Han, M.; Li, Y.; Fan, X.; Li, W.; Wei, L. High‐performance Porous Electrodes for Flow Batteries: Improvements of Specific Surface Areas and Reaction Kinetics. ChemElectroChem 2024, 11. doi:10.1002/celc.202400460
- McArdle, S.; Fiedler, H.; Leveneur, J.; Kennedy, J.; Marshall, A. T. Novel ion beam implantation of felt electrodes for the vanadium flow battery: Role of defects versus nitrogen groups for the VO2+/VO2+ redox reaction. Journal of Power Sources 2024, 608, 234614. doi:10.1016/j.jpowsour.2024.234614
- Ramesh, M.; Maniraj, J.; Santhosh Kumar, D.; Pradeep Kumar, S. L. doi:10.1002/9781119904960.ch4
- Costa de Oliveira, M. A.; Schröder, C.; Brunet Cabré, M.; Nolan, H.; Forner-Cuenca, A.; Perova, T. S.; McKelvey, K.; Colavita, P. E. Effects of N-functional groups on the electron transfer kinetics of VO2+/VO2+ at carbon: Decoupling morphology from chemical effects using model systems. Electrochimica Acta 2024, 475, 143640. doi:10.1016/j.electacta.2023.143640
- McArdle, S.; Bauer, F.; Granieri, S. F.; Ast, M.; Di Fonzo, F.; Marshall, A. T.; Radinger, H. Defective Carbon for Next‐Generation Stationary Energy Storage Systems: Sodium‐Ion and Vanadium Flow Batteries. ChemElectroChem 2023, 11. doi:10.1002/celc.202300512
- Piwek, J.; Gonzalez, G.; Peljo, P.; Frackowiak, E. Molten salt carbon felt oxidation for VRFB electrode performance improvement. Carbon 2023, 215, 118483. doi:10.1016/j.carbon.2023.118483
- Qi, S.; Dai, L.; Huo, W.; Jiang, Y.; Yuan, S.; Xiao, Y.; Liu, Y.; Wang, L.; He, Z. Doping engineering strategies for electrodes and catalysts in vanadium redox flow battery. Composites Part B: Engineering 2023, 265, 110947. doi:10.1016/j.compositesb.2023.110947
- Abbas, S.; Mehboob, S.; Shin, H.-J.; Rizvi, S. B. H.; Kim, J.; Henkensmeier, D.; Ha, H. Y. Tunable surface chemistry of carbon electrodes and the role of surface functionalities towards vanadium redox reactions. Applied Surface Science 2023, 628, 157331. doi:10.1016/j.apsusc.2023.157331
- Ding, C.; Shen, Z.; Zhu, Y.; Cheng, Y. Insights into the Modification of Carbonous Felt as an Electrode for Vanadium Redox Flow Batteries. Materials (Basel, Switzerland) 2023, 16, 3811. doi:10.3390/ma16103811
- McArdle, S.; Marshall, A. T. Why electrode orientation and carbon felt heterogeneity can influence the performance of flow batteries. Journal of Power Sources 2023, 562, 232755. doi:10.1016/j.jpowsour.2023.232755
- Roth, C.; Gebhard, M. doi:10.1002/9783527832767.ch10
- Xu, J.; Zhang, Y.-q.; Zhu, X.-b.; Long, T.; Xu, H.; Lou, X.-c.; Xu, Z.-z.; Fu, H.; Xiang, W.-z.; Xie, M.-m.; Jia, C.-k. Boosting catalytic activities of carbon felt electrode towards redox reactions of vanadium ions by defect engineering. Journal of Central South University 2022, 29, 2956–2967. doi:10.1007/s11771-022-5129-z
- Hall, D. M.; Bachman, R. M.; Radovic, L. R. Carbon materials in redox flow batteries: Challenges and opportunities. Carbon Reports 2022, 1, 94–112. doi:10.7209/carbon.010306
- Naresh, R. p.; Surendran, A.; Ragupathy, P.; Dixon, D. Enhanced electrochemical performance of zinc/bromine redox flow battery with carbon-nanostructured felt generated by cobalt ions. Journal of Energy Storage 2022, 52, 104913. doi:10.1016/j.est.2022.104913
- Shi, H.; Azmi, R.; Han, L.; Tang, C.; Weisenburger, A.; Heinzel, A.; Maibach, J.; Stüber, M.; Wang, K.; Müller, G. Corrosion behavior of Al-containing MAX-phase coatings exposed to oxygen containing molten Pb at 600 °C. Corrosion Science 2022, 201, 110275. doi:10.1016/j.corsci.2022.110275
- Lindner, A.; Radinger, H.; Scheiba, F.; Ehrenberg, H. Structure-activity correlation of thermally activated graphite electrodes for vanadium flow batteries. RSC advances 2022, 12, 14119–14126. doi:10.1039/d2ra02368g
- An, H.; Noh, C.; Jeon, S.; Shin, M.; Kwon, Y.; Chung, Y. The effect of low‐defected carboxylic acid functional group–rich carbon nanotube–doped electrode on the performance of aqueous vanadium redox flow battery. International Journal of Energy Research 2022, 46, 11802–11817. doi:10.1002/er.7946
- Radinger, H.; Hartmann, M.; Ast, M.; Pfisterer, J.; Bron, M.; Ehrenberg, H.; Scheiba, F. Understanding efficient phosphorus-functionalization of graphite for vanadium flow batteries. Electrochimica Acta 2022, 409, 139971. doi:10.1016/j.electacta.2022.139971
- Cohen, M. D. Vanadium. Handbook on the Toxicology of Metals; Elsevier, 2022; pp 937–961. doi:10.1016/b978-0-12-822946-0.00033-7
Patents
- BELLANI SEBASTIANO; BONACCORSO FRANCESCO; NAJAFI LEYLA; PELLEGRINI VITTORIO; PRATO MIRKO. ELETTRODI CARBONIOSI AVENTI MIGLIORATA ATTIVITA’ ELETTROCATALITICA. IT 202000007102 A1, Oct 3, 2021.