Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

Natalia E. Gervits, Andrey A. Gippius, Alexey V. Tkachev, Evgeniy I. Demikhov, Sergey S. Starchikov, Igor S. Lyubutin, Alexander L. Vasiliev, Vladimir P. Chekhonin, Maxim A. Abakumov, Alevtina S. Semkina and Alexander G. Mazhuga
Beilstein J. Nanotechnol. 2019, 10, 1964–1972. https://doi.org/10.3762/bjnano.10.193

Cite the Following Article

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents
Natalia E. Gervits, Andrey A. Gippius, Alexey V. Tkachev, Evgeniy I. Demikhov, Sergey S. Starchikov, Igor S. Lyubutin, Alexander L. Vasiliev, Vladimir P. Chekhonin, Maxim A. Abakumov, Alevtina S. Semkina and Alexander G. Mazhuga
Beilstein J. Nanotechnol. 2019, 10, 1964–1972. https://doi.org/10.3762/bjnano.10.193

How to Cite

Gervits, N. E.; Gippius, A. A.; Tkachev, A. V.; Demikhov, E. I.; Starchikov, S. S.; Lyubutin, I. S.; Vasiliev, A. L.; Chekhonin, V. P.; Abakumov, M. A.; Semkina, A. S.; Mazhuga, A. G. Beilstein J. Nanotechnol. 2019, 10, 1964–1972. doi:10.3762/bjnano.10.193

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 720.2 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Wang, Y.; Sun, C.; Liu, Z.; Zhang, S.; Gao, K.; Yi, F.; Zhou, W.; Liu, H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. Advanced Functional Materials 2024, 34. doi:10.1002/adfm.202410714
  • Talgatov, E. T.; Naizabayev, A. A.; Bukharbayeva, F. U.; Kenzheyeva, A. M.; Yersaiyn, R.; Auyezkhanova, A. S.; Akhmetova, S. N.; Zhizhin, E. V.; Brodskiy, A. R. Pd Catalysts Supported on Mixed Iron and Titanium Oxides in Phenylacetylene Hydrogenation: Effect of TiO2 Content in Magnetic Support Material. Nanomaterials (Basel, Switzerland) 2024, 14, 1392. doi:10.3390/nano14171392
  • Shanmugam, R.; Tharani, M.; Abullais, S. S.; Patil, S. R.; Karobari, M. I. Black seed assisted synthesis, characterization, free radical scavenging, antimicrobial and anti-inflammatory activity of iron oxide nanoparticles. BMC complementary medicine and therapies 2024, 24, 241. doi:10.1186/s12906-024-04552-9
  • Chen, J.; Yang, R.; Yu, H.; Wu, H.; Wu, N.; Wang, S.; Yin, X.; Shi, X.; Wang, H. Ultrasmall iron oxide nanoparticles with MRgFUS for enhanced magnetic resonance imaging of orthotopic glioblastoma. Journal of materials chemistry. B 2024, 12, 4833–4842. doi:10.1039/d3tb02966b
  • Germov, A.; Prokopyev, D.; Konev, A.; Uimin, M.; Minin, A.; Yermakov, A.; Goloborodsky, B.; Kurmachev, I.; Suvorkova, Y. NMR and Mossbauer studies of core–shell FeCo@C ferromagnetic nanoparticles near the superparamagnetic transition. Journal of Magnetism and Magnetic Materials 2023, 588, 171391. doi:10.1016/j.jmmm.2023.171391
  • Savari, M.-N.; Jabali, A. Properties of Iron Oxide Nanoparticles (IONPs). Nanomedicine and Nanotoxicology; Springer Nature Singapore, 2023; pp 49–65. doi:10.1007/978-981-99-6507-6_4
  • Gervits, N. E.; Tkachev, A. V.; Zhurenko, S. V.; Gunbin, A. V.; Bogach, A. V.; Lomanova, N. A.; Danilovich, D. P.; Pavlov, I. S.; Vasiliev, A. L.; Gippius, A. A. The size effect of BiFeO3 nanocrystals on the spatial spin modulated structure. Physical chemistry chemical physics : PCCP 2023, 25, 25526–25536. doi:10.1039/d3cp02850j
  • Beković, M.; Ban, I.; Drofenik, M.; Stergar, J. Magnetic Nanoparticles as Mediators for Magnetic Hyperthermia Therapy Applications: A Status Review. Applied Sciences 2023, 13, 9548. doi:10.3390/app13179548
  • Ryabova, A.; Pominova, D.; Markova, I.; Nikitin, A.; Ostroverkhov, P.; Lasareva, P.; Semkina, A.; Plotnikova, E.; Morozova, N.; Romanishkin, I.; Linkov, K.; Abakumov, M.; Pankratov, A.; Steiner, R.; Loschenov, V. Fluorescent Microscopy of Hot Spots Induced by Laser Heating of Iron Oxide Nanoparticles. Photonics 2023, 10, 705. doi:10.3390/photonics10070705
  • León-Flores, J.; Pérez-Mazariego, J. L.; Marquina, M.; Gómez, R.; Escamilla, R.; Tehuacanero-Cuapa, S.; Reyes-Damián, C.; Arenas-Alatorre, J. Controlled Formation of Hematite—Magnetite Nanoparticles by a Biosynthesis Method and Its Photocatalytic Removal Potential Against Methyl Orange Dye. Journal of Cluster Science 2022, 34, 2381–2395. doi:10.1007/s10876-022-02392-6
  • Agarwal, N.; Poluri, K. M. doi:10.1002/9783527833689.ch6
  • Gervits, N.; Tkachev, A.; Zhurenko, S.; Gunbin, A.; Pokatilov, V.; Gippius, A. Zero-field 57Fe NMR in BiFeO3 based compounds: Problems, solutions and application to Bi1-xSrxFeO3. Solid State Communications 2022, 344, 114682. doi:10.1016/j.ssc.2022.114682
  • Crețu, B. E.-B.; Dodi, G.; Shavandi, A.; Gardikiotis, I.; Șerban, I. L.; Balan, V. Imaging Constructs: The Rise of Iron Oxide Nanoparticles. Molecules (Basel, Switzerland) 2021, 26, 3437. doi:10.3390/molecules26113437
  • Germov, A. Y.; Prokopyev, D. A.; Mikhalev, K. N.; Goloborodskiy, B. Y.; Uimin, M. A.; Yermakov, A. E.; Konev, A. S.; Minin, A. S.; Novikov, S. I.; Gaviko, V. S.; Murzakaev, A. Quantitative phase analysis of magnetic Fe@C nanoparticles. Materials Today Communications 2021, 27, 102382. doi:10.1016/j.mtcomm.2021.102382
  • Jia, Z.; Wang, W.; Li, Z.; Sun, R.; Zhou, S.; Deepak, F. L.; Su, C.; Li, Y.; Wang, Z. Morphology-Tunable Synthesis of Intrinsic Room-Temperature Ferromagnetic γ-Fe 2 O 3 Nanoflakes. ACS applied materials & interfaces 2021, 13, 24051–24061. doi:10.1021/acsami.1c05342
  • Dhas, N.; Kudarha, R. R.; Pandey, A.; Nikam, A. N.; Sharma, S.; Singh, A.; Garkal, A.; Hariharan, K.; Singh, A.; Bangar, P.; Yadhav, D.; Parikh, D.; Sawant, K. K.; Mutalik, S.; Garg, N.; Mehta, T. Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. Journal of controlled release : official journal of the Controlled Release Society 2021, 333, 188–245. doi:10.1016/j.jconrel.2021.03.021
  • Pokatilov, V.; Makarova, A.; Gippius, A. A.; Tkachev, A. V.; Zhurenko, S. V.; Bagdinova, A. N.; Gervits, N. Evolution of spatial spin-modulated structure with La doping in Bi1-yLayFeO3 multiferroics. Journal of Magnetism and Magnetic Materials 2021, 517, 167341. doi:10.1016/j.jmmm.2020.167341
  • Shibaev, A.; Shvets, P. V.; Kessel, D. E.; Kamyshinsky, R.; Orekhov, A. S.; Abramchuk, S. S.; Khokhlov, A. R.; Philippova, O. E. Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH. Beilstein journal of nanotechnology 2020, 11, 1230–1241. doi:10.3762/bjnano.11.107
  • Talgatov, E. T.; Auyezkhanova, A. S.; Seitkalieva, K. S.; Tumabayev, N. Z.; Akhmetova, S. N.; Zharmagambetova, A. K. Co-precipitation synthesis of mesoporous maghemite for catalysis application. Journal of Porous Materials 2020, 27, 919–927. doi:10.1007/s10934-020-00869-1
  • Ferreira, M. T.; Sousa, J.; Pais, A. A. C. C.; Vitorino, C. The Role of Magnetic Nanoparticles in Cancer Nanotheranostics. Materials (Basel, Switzerland) 2020, 13, 266. doi:10.3390/ma13020266
Other Beilstein-Institut Open Science Activities