Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity

Sebastian Pieper, Hannah Onafuye, Dennis Mulac, Jindrich Cinatl Jr., Mark N. Wass, Martin Michaelis and Klaus Langer
Beilstein J. Nanotechnol. 2019, 10, 2062–2072. https://doi.org/10.3762/bjnano.10.201

Cite the Following Article

Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity
Sebastian Pieper, Hannah Onafuye, Dennis Mulac, Jindrich Cinatl Jr., Mark N. Wass, Martin Michaelis and Klaus Langer
Beilstein J. Nanotechnol. 2019, 10, 2062–2072. https://doi.org/10.3762/bjnano.10.201

How to Cite

Pieper, S.; Onafuye, H.; Mulac, D.; Cinatl, J., Jr..; Wass, M. N.; Michaelis, M.; Langer, K. Beilstein J. Nanotechnol. 2019, 10, 2062–2072. doi:10.3762/bjnano.10.201

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 398.2 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zeng, C.; Li, J.; Gong, J.; Zhang, L.; Yu, L. Synthesis of ZIF-8/PVA microspheres with the assistance of a microfluidic device and their controlled drug release properties. Microporous and Mesoporous Materials 2024, 376, 113187. doi:10.1016/j.micromeso.2024.113187
  • Ahmadi, H.; Haddadi-Asl, V.; Mohammadloo, H. E. Advancing anticorrosion and antibacterial performance of mg AZ31 implants using novel pH-responsive polymeric surfactant for preparing PLGA nanoparticles. Surface and Coatings Technology 2024, 482, 130738. doi:10.1016/j.surfcoat.2024.130738
  • Ravi Kiran, A. V. V. V.; Kumari, G. K.; Krishnamurthy, P. T.; Johnson, A. P.; Kenchegowda, M.; Osmani, R. A. M.; Abu Lila, A. S.; Moin, A.; Gangadharappa, H. V.; Rizvi, S. M. D. An Update on Emergent Nano-Therapeutic Strategies against Pediatric Brain Tumors. Brain sciences 2024, 14, 185. doi:10.3390/brainsci14020185
  • Solanki, N.; Dureja, H. Polymeric Nanoparticles-Based Drug Delivery Systems for Anticancer Therapy. Recent Advances in Pharmaceutical Innovation and Research; Springer Nature Singapore, 2023; pp 499–515. doi:10.1007/978-981-99-2302-1_21
  • Panda, P. K.; Jain, S. K. Doxorubicin bearing peptide anchored PEGylated PLGA nanoparticles for the effective delivery to prostate cancer cells. Journal of Drug Delivery Science and Technology 2023, 86, 104667. doi:10.1016/j.jddst.2023.104667
  • Ekinci, M.; Dos Santos, C. C.; Alencar, L. M. R.; Akbaba, H.; Santos-Oliveira, R.; Ilem-Ozdemir, D. Atezolizumab-Conjugated Poly(lactic acid)/Poly(vinyl alcohol) Nanoparticles as Pharmaceutical Part Candidates for Radiopharmaceuticals. ACS omega 2022, 7, 47956–47966. doi:10.1021/acsomega.2c05834
  • Brindisi, M.; Curcio, M.; Frattaruolo, L.; Cirillo, G.; Leggio, A.; Rago, V.; Nicoletta, F. P.; Cappello, A. R.; Iemma, F. CD44-targeted nanoparticles with GSH-responsive activity as powerful therapeutic agents against breast cancer. International journal of biological macromolecules 2022, 221, 1491–1503. doi:10.1016/j.ijbiomac.2022.09.157
  • Sarkar, M.; Wang, Y.; Ekpenyong, O.; Liang, D.; Xie, H. Pharmacokinetic behaviors of soft nanoparticulate formulations of chemotherapeutics. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2022, 15, e1846. doi:10.1002/wnan.1846
  • El Moukhtari, S. H.; Garbayo, E.; Fernández-Teijeiro, A.; Rodríguez-Nogales, C.; Couvreur, P.; Blanco-Prieto, M. J. Nanomedicines and cell-based therapies for embryonal tumors of the nervous system. Journal of controlled release : official journal of the Controlled Release Society 2022, 348, 553–571. doi:10.1016/j.jconrel.2022.06.010
  • Zoudani, E. L.; Soltani, M.; Raahemifar, K. Modeling and Analysis of Nanoparticle with Non-Uniform Drug Concentration Distribution: How to Approach a Programmed Delivery?. Journal of Pharmaceutical Innovation 2022, 18, 79–89. doi:10.1007/s12247-022-09623-3
  • Yousefi Rizi, H. A.; Hoon Shin, D.; Yousefi Rizi, S. Polymeric Nanoparticles in Cancer Chemotherapy: A Narrative Review. Iranian journal of public health 2022, 51, 226. doi:10.18502/ijph.v51i2.8677
  • Heshmatnezhad, F.; Nazar, A. R. S.; Aghaei, H.; Varshosaz, J. Production of doxorubicin-loaded PCL nanoparticles through a flow-focusing microfluidic device: encapsulation efficacy and drug release. Soft matter 2021, 17, 10675–10682. doi:10.1039/d1sm01070k
  • Iles, B.; de Sá Guimarães Nolêto, I. R.; de França Dourado, F.; de Oliveira Silva Ribeiro, F.; de Araújo, A. R.; de Oliveira, T. M.; Souza, J. M. T.; Barros, A. B.; Sousa, G. C.; de Jesus Oliveira, A. C.; da Silva Martins, C.; de Oliveira Viana Veras, M.; de Carvalho Leitão, R. F.; Leite, J. R. S. A.; da Silva, D. A.; Medeiros, J. V. R. Alendronate sodium-polymeric nanoparticles display low toxicity in gastric mucosal of rats and Ofcol II cells. NanoImpact 2021, 24, 100355. doi:10.1016/j.impact.2021.100355
  • Basinska, T.; Gadzinowski, M.; Mickiewicz, D.; Slomkowski, S. Functionalized Particles Designed for Targeted Delivery. Polymers 2021, 13, 2022. doi:10.3390/polym13122022
  • Rommasi, F.; Esfandiari, N. Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy. Nanoscale research letters 2021, 16, 95. doi:10.1186/s11671-021-03553-8
  • Bessone, F.; Dianzani, C.; Argenziano, M.; Cangemi, L.; Spagnolo, R.; Maione, F.; Giraudo, E.; Cavalli, R. Albumin nanoformulations as an innovative solution to overcome doxorubicin chemoresistance. Cancer drug resistance (Alhambra, Calif.) 2021, 4, 192–207. doi:10.20517/cdr.2020.65
  • Rivera-Hernández, G.; Antunes-Ricardo, M.; Martínez-Morales, P.; Sánchez, M. L. Polyvinyl alcohol based-drug delivery systems for cancer treatment. International journal of pharmaceutics 2021, 600, 120478. doi:10.1016/j.ijpharm.2021.120478
  • Haque, T.; Islam, R. A.; Gan, S. H.; Chowdhury, E. H. Characterization and Evaluation of Bone-Derived Nanoparticles as a Novel pH-Responsive Carrier for Delivery of Doxorubicin into Breast Cancer Cells. International journal of molecular sciences 2020, 21, 6721. doi:10.3390/ijms21186721
  • Wong, K. H.; Lu, A.; Chen, X.; Yang, Z. Natural Ingredient-Based Polymeric Nanoparticles for Cancer Treatment. Molecules (Basel, Switzerland) 2020, 25, 3620. doi:10.3390/molecules25163620
  • Gardouh, A. R.; Attia, M. A.; Enan, E. T.; Elbahaie, A. M.; Fouad, R. A.; El-Shafey, M.; Youssef, A. M.; Alomar, S. Y.; Ali, Z. A.-E.; Zaitone, S. A.; Qushawy, M. Synthesis and Antitumor Activity of Doxycycline Polymeric Nanoparticles: Effect on Tumor Apoptosis in Solid Ehrlich Carcinoma. Molecules (Basel, Switzerland) 2020, 25, 3230. doi:10.3390/molecules25143230
Other Beilstein-Institut Open Science Activities