Supporting Information
A comparison between this work with related literature references, and photographs and SEM pictures of the LiFePO4 and Li4Ti5O12 fiber membrane electrodes after 800 cycles of the battery.
Supporting Information File 1: Additional experimental data. | ||
Format: PDF | Size: 330.4 KB | Download |
Cite the Following Article
A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes
Li-li Chen, Hua Yang, Mao-xiang Jing, Chong Han, Fei Chen, Xin-yu Hu, Wei-yong Yuan, Shan-shan Yao and Xiang-qian Shen
Beilstein J. Nanotechnol. 2019, 10, 2229–2237.
https://doi.org/10.3762/bjnano.10.215
How to Cite
Chen, L.-l.; Yang, H.; Jing, M.-x.; Han, C.; Chen, F.; Hu, X.-y.; Yuan, W.-y.; Yao, S.-s.; Shen, X.-q. Beilstein J. Nanotechnol. 2019, 10, 2229–2237. doi:10.3762/bjnano.10.215
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.0 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Ye, J.; Ye, M.; Ye, W.; Feng, Z.; Xiong, D.; He, M. Zr-doped Li4Ti5O12 particles coated with reduced graphene oxide nanolayer as anode for high-rate lithium-ion batteries. Journal of Energy Storage 2024, 102, 114165. doi:10.1016/j.est.2024.114165
- Mados, E.; Atar, I.; Gratz, Y.; Israeli, M.; Kondrova, O.; Fourman, V.; Sherman, D.; Golodnitsky, D.; Sitt, A. Polymer-based LFP cathode/current collector microfiber-meshes with bi- and interlayered architectures for Li-ion battery. Journal of Power Sources 2024, 603, 234397. doi:10.1016/j.jpowsour.2024.234397
- Ye, J.; ye, m.; Ye, W.; Feng, Z.; Xiong, D.; He, M. Reduced Graphene Oxide Nanolayer Coated with Zr-Doped Li4ti5o12 Particles as Anode for High-Rate Lithium-Ion Batteries. Elsevier BV 2024. doi:10.2139/ssrn.4851046
- Akhmetova, K.; Tatykayev, B.; Kalybekkyzy, S.; Sultanov, F.; Bakenov, Z.; Mentbayeva, A. One-step fabrication of all-in-one flexible nanofibrous lithium-ion battery. Journal of Energy Storage 2023, 65, 107237. doi:10.1016/j.est.2023.107237
- Cao, X.; Ma, C.; Luo, L.; Chen, L.; Cheng, H.; Orenstein, R. S.; Zhang, X. Nanofiber Materials for Lithium-Ion Batteries. Advanced Fiber Materials 2023, 5, 1141–1197. doi:10.1007/s42765-023-00278-4
- Shi, R.; Liao, K.; Wang, C. One‐dimensional metal–organic framework‐reinforced gel polymer electrolyte enables a stable Li metal battery. Asia-Pacific Journal of Chemical Engineering 2022, 17. doi:10.1002/apj.2770
- Nada, A. A. Polymer Nanofibrous and Their Application for Batteries. Springer Series on Polymer and Composite Materials; Springer International Publishing, 2021; pp 147–170. doi:10.1007/978-3-030-79979-3_6
- Zhang, W.; Li, Y.; Lv, T.; Liu, W.; Luo, Y.; Guo, R.; Haijuan, P.; Lai, C.; Xie, J. Ti3C2/CNTs Macroporous Conductive Network Boosts Li4Ti5O12-TiO2 Anode Performance for Practical Li Ion and Mg Ion Batteries. Journal of The Electrochemical Society 2021, 168, 030505. doi:10.1149/1945-7111/abe8b8