Cite the Following Article
Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration
Nashrawan Lababidi, Valentin Sigal, Aljoscha Koenneke, Konrad Schwarzkopf, Andreas Manz and Marc Schneider
Beilstein J. Nanotechnol. 2019, 10, 2280–2293.
https://doi.org/10.3762/bjnano.10.220
How to Cite
Lababidi, N.; Sigal, V.; Koenneke, A.; Schwarzkopf, K.; Manz, A.; Schneider, M. Beilstein J. Nanotechnol. 2019, 10, 2280–2293. doi:10.3762/bjnano.10.220
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 537.4 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Rosalba, T. P. F.; Gonçalves, G. J. P.; Salvador, C. E. M.; Fonseca, A.; Andrade, C. K. Z. A modular flow process intensification towards lipid peptoids nano assembly formation. Journal of Flow Chemistry 2024. doi:10.1007/s41981-024-00338-9
- Marecki, E. K.; Oh, K. W.; Knight, P. R.; Davidson, B. A. Poly(lactic-co-glycolic acid) nanoparticle fabrication, functionalization, and biological considerations for drug delivery. Biomicrofluidics 2024, 18, 051503. doi:10.1063/5.0201465
- Khan, M. R. H.; Armstrong, Z.; Lenertz, M.; Saenz, B.; Kale, N.; Li, Q.; MacRae, A.; Yang, Z.; Quadir, M. Metal-Organic Framework Induced Stabilization of Proteins in Polymeric Nanoparticles. ACS applied materials & interfaces 2024, 16, 14405–14420. doi:10.1021/acsami.3c16534
- Yaribeygi, H.; Maleki, M.; Butler, A. E.; Jamialahmadi, T.; Gumpricht, E.; Sahebkar, A. The Beneficial Effects of Curcumin on Lipids: Possible Effects on Dyslipidemia-induced Cardiovascular Complications. Current medicinal chemistry 2024, 31, 6957–6970. doi:10.2174/0929867331666230707094644
- Weiss, A.-V.; Schneider, M. Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems. Beilstein journal of nanotechnology 2023, 14, 1149–1156. doi:10.3762/bjnano.14.95
- Huang, Y.; Liu, C.; Feng, Q.; Sun, J. Microfluidic synthesis of nanomaterials for biomedical applications. Nanoscale horizons 2023, 8, 1610–1627. doi:10.1039/d3nh00217a
- Bai, X.; Tang, S.; Butterworth, S.; Tirella, A. Design of PLGA nanoparticles for sustained release of hydroxyl-FK866 by microfluidics. Biomaterials advances 2023, 154, 213649. doi:10.1016/j.bioadv.2023.213649
- Tavana, B.; Khatibi, A.; Jafarkhani, S.; Zahedi, P.; Hossein Zamani, M.; Hassan Jafari, S.; Najafi, M. Simulation and in vitro evaluations of microfluidically-fabricated clarithromycin-poly (ε-caprolactone) nanoparticles. Journal of Industrial and Engineering Chemistry 2023, 124, 211–223. doi:10.1016/j.jiec.2023.04.009
- Carrêlo, H.; Cidade, M. T.; Borges, J. P.; Soares, P. Gellan Gum/Alginate Microparticles as Drug Delivery Vehicles: DOE Production Optimization and Drug Delivery. Pharmaceuticals (Basel, Switzerland) 2023, 16, 1029. doi:10.3390/ph16071029
- Fernandes, C.; Jathar, M.; Sawant, B. K. S.; Warde, T. Scale-Up of Nanoparticle Manufacturing Process. AAPS Introductions in the Pharmaceutical Sciences; Springer Nature Switzerland, 2023; pp 173–203. doi:10.1007/978-3-031-31380-6_12
- Al-wdan, O. A.; Sharallah, O. A.; Abdelwahab, N. A.; Mohammed, A. O.; Elmowafy, E.; Soliman, M. E. Insights into microfabrication and implementation of microfluidics in pharmaceutical drug delivery and analysis. OpenNano 2023, 12, 100156. doi:10.1016/j.onano.2023.100156
- Patil, A.; Nimdeo, Y. M. Microfluidic Technology for Advanced Drug Delivery Systems. Advances in MEMS and Microfluidic Systems; IGI Global, 2023; pp 228–257. doi:10.4018/978-1-6684-6952-1.ch012
- Viegas, C.; Patrício, A. B.; Prata, J. M.; Nadhman, A.; Chintamaneni, P. K.; Fonte, P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review. Pharmaceutics 2023, 15, 1593. doi:10.3390/pharmaceutics15061593
- Guo, M.; Cui, W.; Li, Y.; Fei, S.; Sun, C.; Tan, M.; Su, W. Microfluidic fabrication of size-controlled nanocarriers with improved stability and biocompatibility for astaxanthin delivery. Food research international (Ottawa, Ont.) 2023, 170, 112958. doi:10.1016/j.foodres.2023.112958
- Ahn, G.-Y.; Choi, I.; Ryu, T.-K.; Ryu, Y.-H.; Oh, D.-H.; Kang, H.-W.; Kang, M.-H.; Choi, S.-W. Continuous production of lipid nanoparticles by multiple-splitting in microfluidic devices with chaotic microfibrous channels. Colloids and surfaces. B, Biointerfaces 2023, 224, 113212. doi:10.1016/j.colsurfb.2023.113212
- Zamani, M. H.; Khatibi, A.; Tavana, B.; Zahedi, P.; Aghamohammadi, S. Characterization of drug-loaded alginate-chitosan polyelectrolyte nanoparticles synthesized by microfluidics. Journal of Polymer Research 2023, 30. doi:10.1007/s10965-023-03468-1
- Tahir, N.; Sharifi, F.; Khan, T. A.; Khan, M. M.; Madni, A.; Rehman, M. Microfluidics: A versatile tool for developing, optimizing, and delivering nanomedicines. Nanomedicine; Elsevier, 2023; pp 137–160. doi:10.1016/b978-0-12-818627-5.00017-8
- Buescher, J.; Novak, A. W.; Khan, S. A.; Weiss, A.-V.; Lee, S.; Schneider, M. PLGA-based nanoparticles for treatment of infectious diseases. Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for Drug Delivery; Elsevier, 2023; pp 303–333. doi:10.1016/b978-0-323-91215-0.00014-5
- Pitingolo, G.; Nastruzzi, C. Production of supramolecular aggregates by microfluidic platforms. Liposomal Encapsulation in Food Science and Technology; Elsevier, 2023; pp 169–187. doi:10.1016/b978-0-12-823935-3.00009-6
- Buescher, J.; John, T.; Boehm, A. K.; Weber, L.; Abdel-Hafez, S. M.; Wagner, C.; Kraus, T.; Gallei, M.; Schneider, M. A precise nanoparticle quantification approach using microfluidics and single-particle tracking. Journal of Drug Delivery Science and Technology 2022, 75, 103579. doi:10.1016/j.jddst.2022.103579