Cite the Following Article
Heating ability of magnetic nanoparticles with cubic and combined anisotropy
Nikolai A. Usov, Mikhail S. Nesmeyanov, Elizaveta M. Gubanova and Natalia B. Epshtein
Beilstein J. Nanotechnol. 2019, 10, 305–314.
https://doi.org/10.3762/bjnano.10.29
How to Cite
Usov, N. A.; Nesmeyanov, M. S.; Gubanova, E. M.; Epshtein, N. B. Beilstein J. Nanotechnol. 2019, 10, 305–314. doi:10.3762/bjnano.10.29
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.5 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Vékony, V.; Márián, I. G.; Szabó, I. A. Effect of magnetic anisotropy and interaction on spatial focused hyperthermia for rotating and oscillating fields. Heliyon 2024, 10, e38290. doi:10.1016/j.heliyon.2024.e38290
- Faílde, D.; Ocampo-Zalvide, V.; Serantes, D.; Iglesias, Ò. Understanding magnetic hyperthermia performance within the "Brezovich criterion": beyond the uniaxial anisotropy description. Nanoscale 2024, 16, 14319–14329. doi:10.1039/d4nr02045f
- Castelo-Grande, T.; Augusto, P. A.; Gomes, L.; Lopes, A. R. C.; Araújo, J. P.; Barbosa, D. Economic and Accessible Portable Homemade Magnetic Hyperthermia System: Influence of the Shape, Characteristics and Type of Nanoparticles in Its Effectiveness. Materials (Basel, Switzerland) 2024, 17, 2279. doi:10.3390/ma17102279
- Maniotis, N. Studying the rate-dependent specific absorption rate in magnetic hyperthermia through multiscale simulations. AIP Advances 2023, 13. doi:10.1063/5.0147924
- Bautin, V. A.; Rytov, R. A.; Nalench, Y. A.; Chmelyuk, N. S.; Antoshina, I. A.; Usov, N. A. Specific absorption rate in quasispherical and elongated aggregates of magnetite nanoparticles: Experimental characterization and numerical simulation. Ceramics International 2023, 49, 16379–16384. doi:10.1016/j.ceramint.2023.01.240
- Rytov, R. A.; Usov, N. A. Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field. Beilstein journal of nanotechnology 2023, 14, 485–493. doi:10.3762/bjnano.14.39
- Mi, Y.; Ma, C.; Zheng, W.; Li, Z.; Zhang, M. Magnetic losses in single-domain magnetic particles. The European Physical Journal Special Topics 2023, 232, 1353–1368. doi:10.1140/epjs/s11734-022-00763-8
- Vassallo, M.; Martella, D.; Barrera, G.; Celegato, F.; Coïsson, M.; Ferrero, R.; Olivetti, E. S.; Troia, A.; Sözeri, H.; Parmeggiani, C.; Wiersma, D. S.; Tiberto, P.; Manzin, A. Improvement of Hyperthermia Properties of Iron Oxide Nanoparticles by Surface Coating. ACS omega 2023, 8, 2143–2154. doi:10.1021/acsomega.2c06244
- Usov, N. Magnetostatic interaction in oriented assembly of elongated nanoparticles. Journal of Magnetism and Magnetic Materials 2022, 562, 169804. doi:10.1016/j.jmmm.2022.169804
- Vijayakanth, V.; Chintagumpala, K. A review on an effect of dispersant type and medium viscosity on magnetic hyperthermia of nanoparticles. Polymer Bulletin 2022, 80, 4737–4781. doi:10.1007/s00289-022-04324-w
- Usov, N. A.; Serebryakova, O. N. Deconvolution of ferromagnetic resonance spectrum of magnetic nanoparticle assembly using genetic algorithm. Scientific reports 2022, 12, 3126. doi:10.1038/s41598-022-07105-7
- Rytov, R. A.; Bautin, V. A.; Usov, N. A. Towards optimal thermal distribution in magnetic hyperthermia. Scientific reports 2022, 12, 3023. doi:10.1038/s41598-022-07062-1
- Gubanova, E. M.; Rytov, R.; Usov, N. A. Dynamics of particles with cubic magnetic anisotropy in a viscous liquid. Journal of Magnetism and Magnetic Materials 2022, 541, 168494. doi:10.1016/j.jmmm.2021.168494
- Gubanova, E. M.; Usov, N. A.; Oleinikov, V. A. Heating ability of elongated magnetic nanoparticles. Beilstein journal of nanotechnology 2021, 12, 1404–1412. doi:10.3762/bjnano.12.104
- Darvishi, V.; Navidbakhsh; Amanpour, S. Heat and mass transfer in the hyperthermia cancer treatment by magnetic nanoparticles. Heat and mass transfer = Warme- und Stoffubertragung 2021, 58, 1–11. doi:10.1007/s00231-021-03161-3
- Rytov, R. A.; Bautin, V.; Usov, N. A. Towards Optimal Thermal Distribution in Magnetic Hyperthermia. Research Square Platform LLC 2021. doi:10.21203/rs.3.rs-953473/v1
- Jiang, K.; Zhang, Q.; Hinojosa, D. T.; Zhang, L.; Xiao, Z.; Yin, Y.; Tong, S.; Colvin, V. L.; Bao, G. Controlled oxidation and surface modification increase heating capacity of magnetic iron oxide nanoparticles. Applied Physics Reviews 2021, 8, 031407. doi:10.1063/5.0042478
- Sanz, B.; Cabreira-Gomes, R.; Torres, T. E.; Valdés, D. P.; Lima, E.; De Biasi, E.; Zysler, R. D.; Ibarra, M. R.; Goya, G. F. Low Dimensional Assemblies of Magnetic MnFe$_2$O$_4$ Nanoparticles and Direct In Vitro Measurements of Enhanced Heating Driven by Dipolar Interactions: Implications for Magnetic Hyperthermia. ACS Applied Nano Materials 2020, 3, 8719–8731. doi:10.1021/acsanm.0c01545
- Usov, N. A.; Serebryakova, O. N. Equilibrium properties of assembly of interacting superparamagnetic nanoparticles. Scientific reports 2020, 10, 13677. doi:10.1038/s41598-020-70711-w
- Osaci, M.; Cacciola, M. Influence of the magnetic nanoparticle coating on the magnetic relaxation time. Beilstein journal of nanotechnology 2020, 11, 1207–1216. doi:10.3762/bjnano.11.105