Supporting Information
Supporting information includes: (i) measured reflection of the FLAT and NW devices, to complement the data presented in Figure 2; (ii) the implied photocurrent density losses, due to reflection and parasitic absorption, as function of height and cross section of the nanowires. The two pictures are complementary to the data presented in Figure 6 of this manuscript.
Supporting Information File 1: Additional experimental data. | ||
Format: PDF | Size: 247.8 KB | Download |
Cite the Following Article
Geometrical optimisation of core–shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells
Robin Vismara, Olindo Isabella, Andrea Ingenito, Fai Tong Si and Miro Zeman
Beilstein J. Nanotechnol. 2019, 10, 322–331.
https://doi.org/10.3762/bjnano.10.31
How to Cite
Vismara, R.; Isabella, O.; Ingenito, A.; Si, F. T.; Zeman, M. Beilstein J. Nanotechnol. 2019, 10, 322–331. doi:10.3762/bjnano.10.31
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 998.0 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Kudryashov, D. A.; Morozov, I. A.; Gudovskikh, A. S. Full Silicon Tandem Solar Cells Based on Vertically Aligned Nanostructures. International Journal of Photoenergy 2022, 2022, 1–11. doi:10.1155/2022/8799060
- Zamani, M.; Kordrostami, Z.; Hamedi, S. Efficient Inclined Core-Shell Nanowire Solar Cells. Optik 2021, 248, 167974. doi:10.1016/j.ijleo.2021.167974
- Torres, M. U.; Klausen, K. O.; Sitek, A.; Erlingsson, S. I.; Gudmundsson, V.; Manolescu, A. Electromagnetic field emitted by core–shell semiconductor nanowires driven by an alternating current. Journal of Applied Physics 2021, 130, 034301. doi:10.1063/5.0055260
- Mitra, S.; Maiti, D. K. Nanotechnology for green energy and sustainable future. Nano Tools and Devices for Enhanced Renewable Energy; Elsevier, 2021; pp 521–533. doi:10.1016/b978-0-12-821709-2.00014-1
- Tseng, C.-C.; Chen, L.-C.; Chang, L.-B.; Wu, G.; Feng, W.-S.; Jeng, M.-J.; Chen, D. W.; Lee, K.-L. Cu2O-HTM/SiO2-ETM assisted for synthesis engineering improving efficiency and stability with heterojunction planar perovskite thin-film solar cells. Solar Energy 2020, 204, 270–279. doi:10.1016/j.solener.2020.04.077
- Kordrostami, Z.; Sheikholeslami, H. Optimization of light trapping in square and hexagonal grid inclined silicon nanowire solar cells. Optics Communications 2020, 459, 124980. doi:10.1016/j.optcom.2019.124980
- Mönig, H.; Schmid, M. Renewable energy conversion using nano- and microstructured materials. Beilstein journal of nanotechnology 2019, 10, 771–773. doi:10.3762/bjnano.10.76
- Rezaei, N.; Isabella, O.; Procel, P.; Vroon, Z.; Zeman, M. Optical study of back-contacted CIGS solar cells. Optics express 2019, 27, A269–A279. doi:10.1364/oe.27.00a269