Supporting Information
Yield strain stress curve of the hydrogels; Cross-section SEM image of the graphene/hydrogel composite; Hysteresis curve for the graphene/WG-hydrogel strain sensor; Optical cross-section images of the graphene/WG-hydrogel composite before and after stretching.
Supporting Information File 1: Additional figures. | ||
Format: PDF | Size: 296.2 KB | Download |
Cite the Following Article
Wearable, stable, highly sensitive hydrogel–graphene strain sensors
Jian Lv, Chuncai Kong, Chao Yang, Lu Yin, Itthipon Jeerapan, Fangzhao Pu, Xiaojing Zhang, Sen Yang and Zhimao Yang
Beilstein J. Nanotechnol. 2019, 10, 475–480.
https://doi.org/10.3762/bjnano.10.47
How to Cite
Lv, J.; Kong, C.; Yang, C.; Yin, L.; Jeerapan, I.; Pu, F.; Zhang, X.; Yang, S.; Yang, Z. Beilstein J. Nanotechnol. 2019, 10, 475–480. doi:10.3762/bjnano.10.47
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.7 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Ahmed, F.; Song, J.; Masud; Lee, S.; Kim, J. Advances in the Development of Hydrogel-Based Adhesion Layers for Wearable Health Monitors: Focusing on Biocompatibility, Conductivity, and Mechanical Strength. ACS Applied Polymer Materials 2024, 6, 13497–13511. doi:10.1021/acsapm.4c02727
- Park, K.; Park, S.; Jo, Y.; Kim, S. A.; Kim, T. Y.; Kim, S.; Seo, J. Liquid-based electronic materials for bioelectronics: current trends and challenges. Industrial Chemistry & Materials 2024, 2, 361–377. doi:10.1039/d3im00122a
- Nicolau, A.; Mutch, A. L.; Thickett, S. C. Applications of Functional Polymeric Eutectogels. Macromolecular rapid communications 2024, 45, e2400405. doi:10.1002/marc.202400405
- Li, P.; Liu, J.; Wang, S.; Tao, C.; Yang, Y.; Wang, J.; Wang, J. Highly Stretchable Electromechanical Sensors with Ionotronic Knots Based on Hydrogel Fibers. Advanced Materials Technologies 2024, 9. doi:10.1002/admt.202302202
- Shi, X.; Lee, A.; Yang, B.; Ning, H.; Liu, H.; An, K.; Liao, H.; Huang, K.; Wen, J.; Luo, X.; Zhang, L.; Gu, B.; Hu, N. Machine Learning Assisted Electronic/Ionic Skin Recognition of Thermal Stimuli and Mechanical Deformation for Soft Robots. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2024, 11, e2401123. doi:10.1002/advs.202401123
- Hu, X. Q.; Zhu, J. Z.; Hao, Z.; Tang, L.; Sun, J.; Sun, W. R.; Hu, J.; Wang, P. Y.; Basmadji, N. P.; Pedraz, J. L.; Vairo, C.; Lafuente, E. G.; Ramalingam, M.; Xie, S.; Wang, R. Renewable Electroconductive Hydrogels for Accelerated Diabetic Wound Healing and Motion Monitoring. Biomacromolecules 2024, 25, 3566–3582. doi:10.1021/acs.biomac.4c00205
- Wang, Y.; Wang, Z.; Sun, H.; Lyu, T.; Ma, X.; Guo, J.; Tian, Y. Multi-Functional Nano-Doped Hollow Fiber from Microfluidics for Sensors and Micromotors. Biosensors 2024, 14, 186. doi:10.3390/bios14040186
- Chen, S.; Guo, B.; Yu, J.; Yan, Z.; Liu, R.; Yu, C.; Zhao, Z.; Zhang, H.; Yao, F.; Li, J. A polypyrrole-dopamine/poly(vinyl alcohol) anisotropic hydrogel for strain sensor and bioelectrodes. Chemical Engineering Journal 2024, 486, 150182. doi:10.1016/j.cej.2024.150182
- Yan, S.; Chen, Y.; Li, D.; Zheng, Y.; Fu, X.; Yu, B.; Chen, S.; Ni, C.; Qi, H.; Zhou, W. Mechanically robust, transparent, conductive hydrogels based on hydrogen bonding, ionic coordination interactions and electrostatic interactions for light-curing 3D printing. Chemical Engineering Journal 2024, 486, 150289. doi:10.1016/j.cej.2024.150289
- Li, N.; Yang, Y.; Murugesan, B.; Zhang, Y.; Chen, Z.; Yang, X.; Cai, Y. An oriented MXene/silk fibroin nanofiber hydrogel with high strength and strain response ability. New Journal of Chemistry 2024, 48, 4570–4579. doi:10.1039/d3nj04121b
- Zhang, Y.; Zou, J.; Wang, S.; Hu, X.; Liu, Z.; Feng, P.; Jing, X.; Liu, Y. Tailoring nanostructured MXene to adjust its dispersibility in conductive hydrogel for self-powered sensors. Composites Part B: Engineering 2024, 272, 111191. doi:10.1016/j.compositesb.2024.111191
- Reynolds, M.; Stoy, L. M.; Sun, J.; Opoku Amponsah, P. E.; Li, L.; Soto, M.; Song, S. Fabrication of Sodium Trimetaphosphate-Based PEDOT:PSS Conductive Hydrogels. Gels (Basel, Switzerland) 2024, 10, 115. doi:10.3390/gels10020115
- Li, Y.; Chen, C.; Cui, G.; Liu, L.; Zhou, C.; Wu, G. Hydroxyethyl cellulose-based stretchable, antifreeze, ion-conductive hydrogel sensor. European Polymer Journal 2024, 202, 112603. doi:10.1016/j.eurpolymj.2023.112603
- Sentoukas, T.; Skandalis, A.; Pispas, S. doi:10.1002/9783527834266.ch6
- Xu, Z.; Himura, Y.; Ishiguro, C.; Inoue, T.; Nishina, Y.; Kobayashi, Y. Improved performance of strain sensors constructed from highly crystalline graphene with nanospacer. Japanese Journal of Applied Physics 2023, 63, 15001–015001. doi:10.35848/1347-4065/ad0cdb
- Yang, J.-Y.; Kumar, A.; Shaikh, M. O.; Huang, S.-H.; Chou, Y.-N.; Yang, C.-C.; Hsu, C.-K.; Kuo, L.-C.; Chuang, C.-H. Biocompatible, Antibacterial, and Stable Deep Eutectic Solvent-Based Ionic Gel Multimodal Sensors for Healthcare Applications. ACS applied materials & interfaces 2023, 15, 55244–55257. doi:10.1021/acsami.3c09613
- Stocco, T. D.; Zhang, T.; Dimitrov, E.; Ghosh, A.; da Silva, A. M. H.; Melo, W. C. M. A.; Tsumura, W. G.; Silva, A. D. R.; Sousa, G. F.; Viana, B. C.; Terrones, M.; Lobo, A. O. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. International journal of nanomedicine 2023, 18, 6153–6183. doi:10.2147/ijn.s436867
- Meng, L.; Ding, S.; Yan, Z.; Zhong, Z.; Li, W.; Liu, D.; Liu, E. Preparation and performance analysis of CNC/GO/CNTs/PVA/SA-Ca2+ conductive hydrogels. New Journal of Chemistry 2023, 47, 18905–18909. doi:10.1039/d3nj03884j
- Yang, P.-A.; Cui, X.; Li, R.; Shou, M.; Gong, X.; Lee, C.-H.; Zhang, K. Highly Sensitive and Selective Multidirectional Flexible Strain Sensors With Cross-Shaped Structure Based on Fe NWs/Graphene/Interlock Knit Fabric for Human Activity Monitoring. IEEE Sensors Journal 2023, 23, 23440–23447. doi:10.1109/jsen.2023.3308715
- Xiao, Y.; Wu, Y.; Si, P.; Zhang, D. Tough silk fibroin hydrogel via polypropylene glycol (PPG) blending for wearable sensors. Journal of Applied Polymer Science 2023, 140. doi:10.1002/app.54689