Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion

Qianyi Cui, Gangqiang Qin, Weihua Wang, Lixiang Sun, Aijun Du and Qiao Sun
Beilstein J. Nanotechnol. 2019, 10, 540–548. https://doi.org/10.3762/bjnano.10.55

Supporting Information

Supporting Information File 1: A detailed description of the dataset.
Format: PDF Size: 326.2 KB Download

Cite the Following Article

Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion
Qianyi Cui, Gangqiang Qin, Weihua Wang, Lixiang Sun, Aijun Du and Qiao Sun
Beilstein J. Nanotechnol. 2019, 10, 540–548. https://doi.org/10.3762/bjnano.10.55

How to Cite

Cui, Q.; Qin, G.; Wang, W.; Sun, L.; Du, A.; Sun, Q. Beilstein J. Nanotechnol. 2019, 10, 540–548. doi:10.3762/bjnano.10.55

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 713.7 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zainul, R.; Ali, A. B.; Jasim, D. J.; Al- Bayati, A. D. J.; Kaur, I.; Kumar, A.; Mahariq, I.; Hasan, M. A.; Islam, S.; Kareem, M. Biphenyl monolayer construction with single transition metal doping as electrocatalysts for conversion CO2 to fuel. International Journal of Hydrogen Energy 2024. doi:10.1016/j.ijhydene.2024.08.229
  • Chen, J.; Guo, S.; Wang, L.; Liu, S.; Wang, H.; Zhao, Q. Atomic Molybdenum Nanomaterials for Electrocatalysis. Small (Weinheim an der Bergstrasse, Germany) 2024, 20, e2401019. doi:10.1002/smll.202401019
  • Gao, J.; Deng, R.; Wang, J.; Wang, Y.; Li, K.; Wu, Z. Theoretical insights on 3D transition metal anchored poly[5,10,15,20-tetra(4-ethynylphenyl)porphyrin]diyne as highly efficient bifunctional catalyst toward ORR and OER. Molecular Catalysis 2024, 561, 114188. doi:10.1016/j.mcat.2024.114188
  • Miao, B.; Qiu, Z.; Zhen, Z.; Yang, Y.; Yang, Z.; Xiao, T.; Lv, J.; Huang, S.; Wang, Y.; Ma, X. Adsorption and activation of small molecules on boron nitride catalysts. Physical chemistry chemical physics : PCCP 2024, 26, 10494–10505. doi:10.1039/d4cp00103f
  • Liu, Z.; Ma, A.; Wang, Z.; Ding, Z.; Pang, Y.; Fan, G.; Xu, H. Single-atom anchored on curved boron nitride fullerene surface as efficient electrocatalyst for carbon dioxide reduction. Molecular Catalysis 2024, 559, 114040. doi:10.1016/j.mcat.2024.114040
  • Yan, X.; Duan, C.; Yu, S.; Dai, B.; Sun, C.; Chu, H. Recent advances on CO2 reduction reactions using single-atom catalysts. Renewable and Sustainable Energy Reviews 2024, 190, 114086. doi:10.1016/j.rser.2023.114086
  • Moghaddam, F. E.; Shayeganfar, F.; Ramazani, A. Boron-rich enhanced ambient CO2 capture and storage of boron–carbon–nitride hybrid nanotubes. Journal of Materials Chemistry A 2023, 11, 17594–17608. doi:10.1039/d3ta01800h
  • Ou, J.; Duan, X. Construction of a BC3-based TM single-atom catalyst for efficient reduction of CO2 to CH4: a computational study. Physical chemistry chemical physics : PCCP 2023, 25, 17429–17433. doi:10.1039/d3cp01400b
  • Laghaei, M.; Ghasemian, M.; Lei, W.; Kong, L.; Chao, Q. A review of boron nitride-based photocatalysts for carbon dioxide reduction. Journal of Materials Chemistry A 2023, 11, 11925–11963. doi:10.1039/d2ta09564e
  • Jiang, L.; Yang, Q.; Xia, Z.; Yu, X.; Zhao, M.; Shi, Q.; Yu, Q. Recent progress of theoretical studies on electro- and photo-chemical conversion of CO2 with single-atom catalysts. RSC advances 2023, 13, 5833–5850. doi:10.1039/d2ra08021d
  • Yu, L.; Li, F. Pt2 Dimer Anchored Vertically in Defective BN Monolayer as an Efficient Catalyst for N2 Reduction: A DFT Study. Catalysts 2022, 12, 1387. doi:10.3390/catal12111387
  • Wang, K.; Luo, X. Transition-Metal-Doped SiP2 Monolayer for Effective CO2 Capture: A Density Functional Theory Study. ACS omega 2022, 7, 36848–36855. doi:10.1021/acsomega.2c05532
  • Li, M.; Huang, G.; Chen, X.; Yin, J.; Zhang, P.; Yao, Y.; Shen, J.; Wu, Y.; Huang, J. Perspectives on environmental applications of hexagonal boron nitride nanomaterials. Nano Today 2022, 44, 101486. doi:10.1016/j.nantod.2022.101486
  • Shankar, R. B.; Mistry, E. D. R.; Lubert-Perquel, D.; Nevjestic, I.; Heutz, S.; Petit, C. A Response Surface Model to Predict and Experimentally Tune the Chemical, Magnetic and Optoelectronic Properties of Oxygen-Doped Boron Nitride. Chemphyschem : a European journal of chemical physics and physical chemistry 2022, 23, e202100854. doi:10.1002/cphc.202100854
  • Zhang, Y.; Zeng, Z.; Li, H. Design of 3d transition metal anchored B5N3 catalysts for electrochemical CO2 reduction to methane. Journal of Materials Chemistry A 2022, 10, 9737–9745. doi:10.1039/d2ta00941b
  • Bahadur, R.; Singh, G.; Bando, Y.; Vinu, A. Advanced porous borocarbonitride nanoarchitectonics: Their structural designs and applications. Carbon 2022, 190, 142–169. doi:10.1016/j.carbon.2022.01.013
  • Rafiq, M.; Hu, X.; Ye, Z.; Qayum, A.; Xia, H.; Hu, L.; Lu, F.; Chu, P. K. Recent Advances in Structural Engineering of 2D Hexagonal Boron Nitride Electrocatalysts. Nano Energy 2022, 91, 106661. doi:10.1016/j.nanoen.2021.106661
  • Ullah, N.; Ullah, R.; Khan, S.; Xu, Y. Boron nitride-based electrocatalysts for HER, OER, and ORR: A mini-review. Frontiers of Materials Science 2021, 15, 543–552. doi:10.1007/s11706-021-0577-1
  • Qu, M.; Xu, S.; Du, A.; Zhao, C.; Sun, Q. CO2 Capture, Separation and Reduction on Boron-Doped MoS2, MoSe2 and Heterostructures with Different Doping Densities: A Theoretical Study. Chemphyschem : a European journal of chemical physics and physical chemistry 2021, 22, 2392–2400. doi:10.1002/cphc.202100377
  • Yu, J.; He, C.; Pu, C.; Fu, L.; Zhou, D.; Xie, K.; Huo, J.; Zhao, C.; Yu, L. Prediction of stable BC3N2 monolayer from first-principles calculations: Stoichiometry, crystal structure, electronic and adsorption properties. Chinese Chemical Letters 2021, 32, 3149–3154. doi:10.1016/j.cclet.2021.02.046
Other Beilstein-Institut Open Science Activities