Quantification and coupling of the electromagnetic and chemical contributions in surface-enhanced Raman scattering

Yarong Su, Yuanzhen Shi, Ping Wang, Jinglei Du, Markus B. Raschke and Lin Pang
Beilstein J. Nanotechnol. 2019, 10, 549–556. https://doi.org/10.3762/bjnano.10.56

Supporting Information

Additional information on the structure of the substrates used (Figure S1), the corresponding SERS spectra for 785 nm excitation (Figure S2), with tables of Raman enhancement factors under 785 nm excitation (Table S1), spectral shifts for 633 nm (Table S2) and 785 nm (Table S3) excitation, and the ratios of spectral shift to relative chemical enhancement under 633 nm (Table S4) and 785 nm (Table S5) excitation.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 282.9 KB Download

Cite the Following Article

Quantification and coupling of the electromagnetic and chemical contributions in surface-enhanced Raman scattering
Yarong Su, Yuanzhen Shi, Ping Wang, Jinglei Du, Markus B. Raschke and Lin Pang
Beilstein J. Nanotechnol. 2019, 10, 549–556. https://doi.org/10.3762/bjnano.10.56

How to Cite

Su, Y.; Shi, Y.; Wang, P.; Du, J.; Raschke, M. B.; Pang, L. Beilstein J. Nanotechnol. 2019, 10, 549–556. doi:10.3762/bjnano.10.56

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 611.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ghosh, A.; Panneerselvam, M.; Mondal, S.; Das, P.; Singha, T.; Rana, S.; Costa, L. T.; Satpati, B.; Das, S.; Sur, U. K.; Senapati, D. Parallel Plate Capacitor Model at the Nanoscale for Stable and Gigantic SERS Activity of the 4-MBA@R-AuNP-4-MBA@R-AuNP System. ACS omega 2024, 9, 41504–41520. doi:10.1021/acsomega.4c05118
  • Dai, Y.; Yue, L.; Li, W.; Pang, L. Plasmon-enhanced Raman spectroscopy to estimate near-electric-field enhancement. Physical Review A 2024, 109. doi:10.1103/physreva.109.053516
  • Yang, X.; Cui, J.; Shi, Y.; Gao, X. SERS enhancement effect analysis of BaP detection in edible oil using Ag@GO substrate. Microchemical Journal 2024, 199, 110036. doi:10.1016/j.microc.2024.110036
  • Chen, Z.; Yu, L.; Zhang, Z.; Su, L.; Xiong, Y. Photo-driven Surfactant-Free Gold Nanostars for Rapid Bacterial Detection in Food Safety Using Surface-Enhanced Raman Spectroscopy. ACS Food Science & Technology 2024, 4, 373–381. doi:10.1021/acsfoodscitech.3c00470
  • Awiaz, G.; Lin, J.; Wu, A. Recent advances of Au@Ag core-shell SERS-based biosensors. Exploration (Beijing, China) 2023, 3, 20220072. doi:10.1002/exp.20220072
  • Shi, Y.; Yang, X.; Cui, J.; Gao, X. Sers Enhancement Effect Analysis of Bap Detection in Edible Oil Using Ag@Go Substrate. Elsevier BV 2023. doi:10.2139/ssrn.4575845
  • Chen, Z.; Lu, S.; Zhang, Z.; Huang, X.; Zhao, H.; Wei, J.; Li, F.; Yuan, K.; Su, L.; Xiong, Y. Green photoreduction synthesis of dispersible gold nanoparticles and their direct in situ assembling in multidimensional substrates for SERS detection. Mikrochimica acta 2022, 189, 275. doi:10.1007/s00604-022-05379-2
  • Liu, Y.; Li, R.; Zhou, N.; Li, M.; Huang, C.; Mao, H. Recyclable 3D SERS devices based on ZnO nanorod-grafted nanowire forests for biochemical sensing. Applied Surface Science 2022, 582, 152336. doi:10.1016/j.apsusc.2021.152336
  • Sitjar, J.; Der Liao, J.; Lee, H.; Tsai, H. P.; Wang, J. R.; Liu, P. Y. Challenges of SERS technology as a non-nucleic acid or -antigen detection method for SARS-CoV-2 virus and its variants. Biosensors & bioelectronics 2021, 181, 113153. doi:10.1016/j.bios.2021.113153
  • Mohaghegh, F.; Tehrani, A. M.; Materny, A. Investigation of the Importance of the Electronic Enhancement Mechanism for Surface-Enhanced Raman Scattering (SERS). The Journal of Physical Chemistry C 2021, 125, 5158–5166. doi:10.1021/acs.jpcc.0c10128
  • Sung, C.-J.; Chao, S.-H.; Hsu, S.-C. Rapid Detection of Glucose on Nanostructured Gold Film Biosensor by Surface-Enhanced Raman Spectroscopy. Biosensors 2021, 11, 54. doi:10.3390/bios11020054
  • Cui, S.; Tian, C.; Su, Y.; Tian, J.; Fu, Y. Micro-cones Array-Based Plasmonic Metasurface for Sensitive and Enhanced Raman Detection. Plasmonics 2020, 15, 2003–2009. doi:10.1007/s11468-020-01223-6
  • El-Aal, M. A.; Seto, T. Surface-enhanced Raman scattering and catalytic activity studies over nanostructured Au–Pd alloy films prepared by DC magnetron sputtering. Research on Chemical Intermediates 2020, 46, 3741–3756. doi:10.1007/s11164-020-04172-1
  • Okeil, S.; Pashchanka, M.; Heinschke, S.; Bruns, M.; Schneider, J. J. Synergistic Physical and Chemical Enhancement Effects Observed on Surface-Enhanced Raman Spectroscopy Substrates of Silver-Coated, Barrier-Type Anodic Alumina. The Journal of Physical Chemistry C 2020, 124, 13316–13328. doi:10.1021/acs.jpcc.0c00552
  • Liamtsau, V.; Fan, C.; Liu, G.; McGoron, A. J.; Cai, Y. Speciation of thioarsenicals through application of coffee ring effect on gold nanofilm and surface-enhanced Raman spectroscopy. Analytica chimica acta 2020, 1106, 88–95. doi:10.1016/j.aca.2020.01.042
Other Beilstein-Institut Open Science Activities