Supporting Information
Supporting Information File 1: Additional experimental data. | ||
Format: PDF | Size: 326.7 KB | Download |
Cite the Following Article
Direct observation of the CVD growth of monolayer MoS2 using in situ optical spectroscopy
Claudia Beatriz López-Posadas, Yaxu Wei, Wanfu Shen, Daniel Kahr, Michael Hohage and Lidong Sun
Beilstein J. Nanotechnol. 2019, 10, 557–564.
https://doi.org/10.3762/bjnano.10.57
How to Cite
López-Posadas, C. B.; Wei, Y.; Shen, W.; Kahr, D.; Hohage, M.; Sun, L. Beilstein J. Nanotechnol. 2019, 10, 557–564. doi:10.3762/bjnano.10.57
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 689.2 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Huang, Y.; Li, M.; Hu, Z.; Hu, C.; Shen, W.; Li, Y.; Sun, L. In Situ Studies on the Influence of Surface Symmetry on the Growth of MoSe2 Monolayer on Sapphire Using Reflectance Anisotropy Spectroscopy and Differential Reflectance Spectroscopy. Nanomaterials (Basel, Switzerland) 2024, 14, 1457. doi:10.3390/nano14171457
- Oh, J.; Park, M.; Kang, Y.; Ju, S.-Y. Real-Time Observation for MoS2 Growth Kinetics and Mechanism Promoted by the Na Droplet. ACS nano 2024, 18, 19314–19323. doi:10.1021/acsnano.4c05586
- Qi, H.; Fu, X. A practical and effective method for reducing differential reflectance spectroscopy noise. Nanotechnology and Precision Engineering 2022, 5. doi:10.1063/10.0009680
- Jiang, D.; Liu, Z.; Xiao, Z.; Qian, Z.; Sun, Y.; Zeng, Z.; Wang, R. Flexible Electronics Based Upon 2D Transition Metal Dichalcogenides. Journal of Materials Chemistry A 2021, 10, 89–121. doi:10.1039/d1ta06741a
- Khattab, Y.; Aleksandrov, S. E.; Fedorov, V. V.; Koval, O. Y. Influence of the Deposition Temperature on the Structure of Thin Molybdenum Disulfide Films Formed by Chemical Vapor Deposition. Russian Journal of Applied Chemistry 2021, 94, 1044–1051. doi:10.1134/s1070427221080048
- Ahmad, K.; Shinde, M. A.; Kim, H. Molybdenum disulfide/reduced graphene oxide: Progress in synthesis and electro-catalytic properties for electrochemical sensing and dye sensitized solar cells. Microchemical Journal 2021, 169, 106583. doi:10.1016/j.microc.2021.106583
- Kim, Y. C.; Yoo, H.; Nguyen, V. T.; Lee, S.; Park, J.-Y.; Ahn, Y. H. High-Speed Imaging of Second-Harmonic Generation in MoS2 Bilayer under Femtosecond Laser Ablation. Nanomaterials (Basel, Switzerland) 2021, 11, 1786. doi:10.3390/nano11071786
- Zhang, J.; Qian, Y.; Nan, H.; Gu, X.; Xiao, S. Large-scale MoS2(1−x)Se2x monolayers synthesized by confined-space CVD. Nanotechnology 2021, 32, 355601. doi:10.1088/1361-6528/ac0026
- Wang, Y.; Zhang, L.; Lv, S.; Zhang, F.; Sui, Q.; Jia, L.; Jiang, M. In-situ variable reflectance spectra model of two-dimensional material prepared by CVD. Journal of Crystal Growth 2021, 559, 126034. doi:10.1016/j.jcrysgro.2021.126034
- Tsakonas, C.; Dimitropoulos, M.; Manikas, A. C.; Galiotis, C. Growth and in situ characterization of 2D materials by chemical vapour deposition on liquid metal catalysts: a review. Nanoscale 2021, 13, 3346–3373. doi:10.1039/d0nr07330j
- Can, T. T. T.; Kwack, Y.-J.; Choi, W.-S. Drop-on-demand patterning of MoS2 using electrohydrodynamic jet printing for thin-film transistors. Materials & Design 2021, 199, 109408. doi:10.1016/j.matdes.2020.109408
- Kondekar, N.; Shetty, P. P.; Wright, S. C.; McDowell, M. T. In Situ Characterization of Transformations in Nanoscale Layered Metal Chalcogenide Materials: A Review. ChemNanoMat 2021, 7, 208–222. doi:10.1002/cnma.202000575
- Pandey, S. K.; Izquierdo, N.; Campbell, S. A. Growth of Very Large MoS 2 Single Crystals Using Out-Diffusion Transport and Their Use in Field Effect Transistors. IEEE Transactions on Nanotechnology 2021, 20, 495–502. doi:10.1109/tnano.2021.3083686
- Wang, Y.; Zhang, L.; Yang, W.; Lv, S.; Su, C.; Xiao, H.; Zhang, F.; Sui, Q.; Jia, L.; Jiang, M. An In Situ Reflectance Spectroscopic Investigation to Monitor Two-Dimensional MoS2 Flakes on a Sapphire Substrate. Materials (Basel, Switzerland) 2020, 13, 5794. doi:10.3390/ma13245794
- Kim, B. H.; SoonHyeong, K.; Gu, H. H.; Yoon, Y. J. Effect of Sputtering Parameters on Molybdenum Disulfide Thin Films Synthesized by Radio Frequency Magnetron Sputtering and Electron-Beam Irradiation. Applied Science and Convergence Technology 2020, 29, 186–189. doi:10.5757/asct.2020.29.6.186
- Gupta, D.; Chauhan, V.; Kumar, R. A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) Material: Past and Recent Developments. Inorganic Chemistry Communications 2020, 121, 108200. doi:10.1016/j.inoche.2020.108200
- Wree, J.-L.; Ciftyurek, E.; Zanders, D.; Boysen, N.; Kostka, A.; Rogalla, D.; Kasischke, M.; Ostendorf, A.; Schierbaum, K.; Devi, A. A new metalorganic chemical vapor deposition process for MoS2 with a 1,4-diazabutadienyl stabilized molybdenum precursor and elemental sulfur. Dalton transactions (Cambridge, England : 2003) 2020, 49, 13462–13474. doi:10.1039/d0dt02471f
- Xue, H.; Wu, G.; Zhao, B.; Wang, D.; Wu, X.; Hu, Z. High-Temperature In Situ Investigation of ChemicalVapor Deposition to Reveal Growth Mechanisms of Monolayer MolybdenumDisulfide. ACS Applied Electronic Materials 2020, 2, 1925–1933. doi:10.1021/acsaelm.0c00231
- Dam, S.; Thakur, A.; Dey, R.; Hussain, S. Synthesis of preferentially oriented MoS2 thin films as rectifying p–n junction. Materialia 2020, 11, 100688. doi:10.1016/j.mtla.2020.100688
- Satha, S.; Sahu, R.; Mun, J.; Kim, K. Thermolytic Deposition of MoS 2 Nanolayer for Si Solar Cell Applications. physica status solidi (a) 2020, 217, 1900993. doi:10.1002/pssa.201900993
Patents
- OGAWA YUI; TANIYASU YOSHITAKA. OBSERVATION METHOD AND SYSTEM. WO 2022137419 A1, June 30, 2022.