Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements

Aaron Mascaro, Yoichi Miyahara, Tyler Enright, Omur E. Dagdeviren and Peter Grütter
Beilstein J. Nanotechnol. 2019, 10, 617–633. https://doi.org/10.3762/bjnano.10.62

Supporting Information

Supporting Information File 1: MATLAB code to simulate FF-trEFM measurements with a stretched exponential response.
Format: M Size: 4.0 KB Download

Cite the Following Article

Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements
Aaron Mascaro, Yoichi Miyahara, Tyler Enright, Omur E. Dagdeviren and Peter Grütter
Beilstein J. Nanotechnol. 2019, 10, 617–633. https://doi.org/10.3762/bjnano.10.62

How to Cite

Mascaro, A.; Miyahara, Y.; Enright, T.; Dagdeviren, O. E.; Grütter, P. Beilstein J. Nanotechnol. 2019, 10, 617–633. doi:10.3762/bjnano.10.62

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 271.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Guner, B.; Dincer, O.; Dagdeviren, O. E. Fast and Slow Time-Scale Effects of Photoinduced Surface Oxygen Vacancies on the Charge Carrier Dynamics of TiO2. ACS Applied Energy Materials 2024, 7, 2292–2298. doi:10.1021/acsaem.3c03040
  • Wang, X.; Zahl, P.; Wang, H.; Altman, E. I.; Schwarz, U. D. How Precisely Can Individual Molecules Be Analyzed? A Case Study on Locally Quantifying Forces and Energies Using Scanning Probe Microscopy. ACS nano 2024, 18, 4495–4506. doi:10.1021/acsnano.3c11219
  • Sato, J.; Ishibashi, R.; Takahashi, T. Time-resolved electrostatic force microscopy under base-bias-level control. Measurement Science and Technology 2023, 35, 35005–035005. doi:10.1088/1361-6501/ad10e0
  • Grévin, B.; Husainy, F.; Aldakov, D.; Aumaître, C. Dual-heterodyne Kelvin probe force microscopy. Beilstein journal of nanotechnology 2023, 14, 1068–1084. doi:10.3762/bjnano.14.88
  • Eftekhari, Z.; Rezaei, N.; Stokkel, H.; Zheng, J.-Y.; Cerreta, A.; Hermes, I.; Nguyen, M.; Rijnders, G.; Saive, R. Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination. Beilstein journal of nanotechnology 2023, 14, 1059–1067. doi:10.3762/bjnano.14.87
  • Tetard, L. ACS In Focus; American Chemical Society, 2023. doi:10.1021/acsinfocus.7e7008
  • Zhu, C.; Fuchs, T.; Weber, S. A. L.; Richter, F. H.; Glasser, G.; Weber, F.; Butt, H.-J.; Janek, J.; Berger, R. Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques. Nature communications 2023, 14, 1300. doi:10.1038/s41467-023-36792-7
  • Kilpatrick, J. I.; Kargin, E.; Rodriguez, B. J. Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water. Beilstein journal of nanotechnology 2022, 13, 922–943. doi:10.3762/bjnano.13.82
  • Berweger, S.; Zhang, F.; Larson, B. W.; Ferguson, A. J.; Palmstrom, A. F.; Reid, O. G.; Wallis, T. M.; Zhu, K.; Berry, J. J.; Kabos, P.; Nanayakkara, S. U. Nanoscale Photoexcited Carrier Dynamics in Perovskites. The journal of physical chemistry letters 2022, 13, 2388–2395. doi:10.1021/acs.jpclett.2c00233
  • Aubriet, V.; Courouble, K.; Bardagot, O.; Demadrille, R.; Borowik, Ł.; Grévin, B. Hidden surface photovoltages revealed by pump probe KPFM. Nanotechnology 2022, 33, 225401. doi:10.1088/1361-6528/ac5542
  • Wang, J.-H.; Qian, J.-Q.; Dou, Z.-P.; Lin, R.; Xu, Z.-Y.; Cheng, P.; Wang, C.; Li, L.; Li, Y.-Z. Wavelet transform based method of measuring multi-frequency electrostatic force microscopy dynamic process. Acta Physica Sinica 2022, 71, 96801–096801. doi:10.7498/aps.71.20212095
  • Demir, A. Adaptive Time-Resolved Mass Spectrometry With Nanomechanical Resonant Sensors. IEEE Sensors Journal 2021, 21, 27582–27589. doi:10.1109/jsen.2021.3127244
  • Aubriet, V.; Courouble, K.; Bardagot, O.; Demadrille, R.; Borowik, L.; Grévin, B. Hidden surface photovoltages revealed by pump probe KPFM. 2021.
  • Dou, Z.; Qian, J.; Li, Y.; Lin, R.; Wang, T.; Wang, J.; Cheng, P.; Xu, Z. Enhancing higher-order eigenmodes of AFM using bridge/cantilever coupled system. Micron (Oxford, England : 1993) 2021, 150, 103147. doi:10.1016/j.micron.2021.103147
  • Demir, A. Adaptive Time-Resolved Mass Spectrometry with Nanomechanical Resonant Sensors. IEEE Sensors Journal 2021, 1.
  • Kim, B.; Jahng, J.; Sifat, A. A.; Lee, E. S.; Potma, E. O. Monitoring Fast Thermal Dynamics at the Nanoscale through Frequency Domain Photoinduced Force Microscopy. The Journal of Physical Chemistry C 2021, 125, 7276–7286. doi:10.1021/acs.jpcc.1c00874
  • Schön, N.; Schierholz, R.; Jesse, S.; Yu, S.; Eichel, R.-A.; Balke, N.; Hausen, F. Signal Origin of Electrochemical Strain Microscopy and Link to Local Chemical Distribution in Solid State Electrolytes. Small methods 2021, 5, 2001279. doi:10.1002/smtd.202001279
  • Demir, A. Understanding fundamental trade-offs in nanomechanical resonant sensors. Journal of Applied Physics 2021, 129, 044503. doi:10.1063/5.0035254
  • Shea, D. E.; Giridharagopal, R.; Ginger, D. S.; Brunton, S. L.; Kutz, J. N. Extraction of Instantaneous Frequencies and Amplitudes in Nonstationary Time-Series Data. IEEE Access 2021, 9, 83453–83466. doi:10.1109/access.2021.3087595
  • Albonetti, C.; Chiodini, S.; Annibale, P.; Stoliar, P.; Martinez, R. V.; Garcia, R.; Biscarini, F. Quantitative phase-mode electrostatic force microscopy on silicon oxide nanostructures. Journal of microscopy 2020, 280, 252–269. doi:10.1111/jmi.12938
Other Beilstein-Institut Open Science Activities