Self-assembly and wetting properties of gold nanorod–CTAB molecules on HOPG

Imtiaz Ahmad, Floor Derkink, Tim Boulogne, Pantelis Bampoulis, Harold J. W. Zandvliet, Hidayat Ullah Khan, Rahim Jan and E. Stefan Kooij
Beilstein J. Nanotechnol. 2019, 10, 696–705. https://doi.org/10.3762/bjnano.10.69

Cite the Following Article

Self-assembly and wetting properties of gold nanorod–CTAB molecules on HOPG
Imtiaz Ahmad, Floor Derkink, Tim Boulogne, Pantelis Bampoulis, Harold J. W. Zandvliet, Hidayat Ullah Khan, Rahim Jan and E. Stefan Kooij
Beilstein J. Nanotechnol. 2019, 10, 696–705. https://doi.org/10.3762/bjnano.10.69

How to Cite

Ahmad, I.; Derkink, F.; Boulogne, T.; Bampoulis, P.; Zandvliet, H. J. W.; Khan, H. U.; Jan, R.; Kooij, E. S. Beilstein J. Nanotechnol. 2019, 10, 696–705. doi:10.3762/bjnano.10.69

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 907.1 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ahmad, I.; Jan, R.; Khan, S. A.; Khan, H. U. Gold nano densities: Relationship with drying parameters. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 702, 135082. doi:10.1016/j.colsurfa.2024.135082
  • Zhang, M.; Liu, J.; Li, X.; Zhao, X.; Cheng, Z.; Deng, T. Versatile Approach to Self‐Assembly of Surface Modified Nanoparticles into SERS‐Active Nanoclusters. Particle & Particle Systems Characterization 2024, 41. doi:10.1002/ppsc.202400034
  • Ahmad, I.; Jan, R.; Khan, H. U.; Khattak, S. A.; Murad, Y. Assembly of nanoparticles at symmetric coffee stain locations. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 682, 132833. doi:10.1016/j.colsurfa.2023.132833
  • Hammond-Pereira, E.; Zhang, X.; Wu, D.; Saunders, S. R. Precise tuning of silica pore length and pore diameter on silica-encapsulated gold core–shell nanoparticles and catalytic impact. Chemical Engineering Journal 2023, 475, 146043. doi:10.1016/j.cej.2023.146043
  • Han, H.; Husein, M. M.; Natale, G. Rheological behavior and microstructure of AgBr nanoparticle/cetyltrimethylammonium bromide/potassium hydrogen phthalate wormlike micelles. Physics of Fluids 2023, 35. doi:10.1063/5.0167760
  • Eftekhari, M.; Schwarzenberger, K.; Karakashev, S. I.; Grozev, N. A.; Eckert, K. Oppositely charged surfactants and nanoparticles at the air-water interface: Influence of surfactant to nanoparticle ratio. Journal of colloid and interface science 2023, 653, 1388–1401. doi:10.1016/j.jcis.2023.09.038
  • Choi, G.; Rejinold, N. S.; Piao, H.; Ryu, Y. B.; Kwon, H.-J.; Lee, I. C.; Seo, J. I.; Yoo, H. H.; Jin, G.-W.; Choy, J.-H. The Next Generation COVID-19 Antiviral; Niclosamide-Based Inorganic Nanohybrid System Kills SARS-CoV-2. Small (Weinheim an der Bergstrasse, Germany) 2023, 20, e2305148. doi:10.1002/smll.202305148
  • Ahmad, I. Nanostructures of Different Population in Coffee Stain. Elsevier BV 2023. doi:10.2139/ssrn.4630899
  • McGuire, S. C.; Zhang, Y.; Wong, S. S. A combined TEM and SAXS study of the growth and self-assembly of ultrathin Pt nanowires. Nanotechnology 2022, 33, 475602. doi:10.1088/1361-6528/ac893b
  • Jin, G.-w.; Choi, G.; Rejinold, N. S.; Piao, H.; Ryu, Y. B.; Kwon, H.-J.; Lee, I. C.; Choy, J.-H. Orally administered niclosamide-based organic/inorganic hybrid suppresses SARS-CoV-2 infection. Cold Spring Harbor Laboratory 2022. doi:10.1101/2022.07.19.500639
  • Creatto, E. J.; Okasaki, F. B.; Cardoso, M. B.; Sabadini, E. Wormlike micelles of CTAB with phenols and with the corresponding phenolate derivatives - When hydrophobicity and charge drive the coacervation. Journal of colloid and interface science 2022, 627, 355–366. doi:10.1016/j.jcis.2022.07.044
  • Lee, J.; Na, J.; Lim, S. Control of adhesion and desorption behavior of silica particles on InGaAs surfaces by addition of hexadecyltrimethylammonium bromide in ammonium hydroxide–hydrogen peroxide mixture solution. Applied Surface Science 2022, 590, 152949. doi:10.1016/j.apsusc.2022.152949
  • Zhang, J.; Wang, D.; Shi, S.; Hao, W.; Yuan, C.; Lu, Z.; Teng, F. Synthesis and photocatalytic activity of Cu2O hollow nanospheres/TiO2 nanosheets by an in-situ water-bath method. Journal of Alloys and Compounds 2022, 899, 163252. doi:10.1016/j.jallcom.2021.163252
  • AHMAD, I.; JAN, R.; RIAZ, A.; NAYAB, G. E. STATIONARY AND ULTRASONIC NANOPARTICLE ASSEMBLY ON NOTABLE SURFACES. Surface Review and Letters 2022, 29. doi:10.1142/s0218625x22500457
  • Lee, J.; Lim, S.; Na, J. Control of Adhesion and Desorption Behavior of Silica Particles on Ingaas Surfaces by Addition of Hexadecyltrimethylammonium Bromide in Ammonium Hydroxide–Hydrogen Peroxide Mixture Solution. SSRN Electronic Journal 2022. doi:10.2139/ssrn.4015270
  • Adelt, M.; MacLaren, D. A.; Birch, D. J. S.; Chen, Y. Morphological changes of silica shells deposited on gold nanorods : implications for nanoscale photocatalysts. ACS Applied Nano Materials 2021, 4, 7730–7738. doi:10.1021/acsanm.1c00977
  • Lee, B. H.-j.; Kotov, N. A.; Arya, G. Reconfigurable Chirality of DNA-Bridged Nanorod Dimers. ACS nano 2021, 15, 13547–13558. doi:10.1021/acsnano.1c04326
  • Mehere, A.; Chaure, N. B. Precisely controlled shape and size of gold nanostructures by seed-mediated reduction reaction method. Applied Physics A 2020, 126, 1–14. doi:10.1007/s00339-020-03837-3
  • Ahmad, I.; Jan, R.; Khan, H. U.; Hussain, A.; Khan, S. A. Imaging, deposition, and self-assembly of CTAB stabilized gold nanostructures. SN Applied Sciences 2020, 2, 1–11. doi:10.1007/s42452-020-2888-8
  • Ahmad, I. Deposition and distribution of gold nanoparticles in a coffee-stain ring on the HOPG terraces. Bulletin of Materials Science 2020, 43, 1–7. doi:10.1007/s12034-020-02094-7
Other Beilstein-Institut Open Science Activities