Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces

Yunlu Pan, Wenting Kong, Bharat Bhushan and Xuezeng Zhao
Beilstein J. Nanotechnol. 2019, 10, 866–873. https://doi.org/10.3762/bjnano.10.87

Cite the Following Article

Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces
Yunlu Pan, Wenting Kong, Bharat Bhushan and Xuezeng Zhao
Beilstein J. Nanotechnol. 2019, 10, 866–873. https://doi.org/10.3762/bjnano.10.87

How to Cite

Pan, Y.; Kong, W.; Bhushan, B.; Zhao, X. Beilstein J. Nanotechnol. 2019, 10, 866–873. doi:10.3762/bjnano.10.87

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 650.2 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Wang, J.; Li, F.; Pan, Y.; Chen, F.; Huang, C.; Zhao, X. Robust photopolymerized superoleophobic/superhydrophilic mesh for oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 701, 134892. doi:10.1016/j.colsurfa.2024.134892
  • Bhushan, B. Nanofabrication Techniques Used for Superhydrophobic Surfaces. Introduction to Biomimetics and Bioinspiration; Springer Nature Switzerland, 2024; pp 111–122. doi:10.1007/978-3-031-62344-8_5
  • Bhushan, B. Adaptable Fabrication Techniques for Mechanically Durable Superliquiphobic/Philic Surfaces. Introduction to Biomimetics and Bioinspiration; Springer Nature Switzerland, 2024; pp 291–396. doi:10.1007/978-3-031-62344-8_9
  • Li, M.; Mao, A.; Guan, Q.; Saiz, E. Nature-inspired adhesive systems. Chemical Society reviews 2024, 53, 8240–8305. doi:10.1039/d3cs00764b
  • Zhou, J.; Zheng, H.; Sheng, W.; Hao, X.; Zhang, X. Preparation and Anti-Icing Properties of Zirconia Superhydrophobic Coating. Molecules (Basel, Switzerland) 2024, 29, 1837. doi:10.3390/molecules29081837
  • Feng, Q.; Wu, W.; Cui, Y.; Zhou, Y.; Zhang, Y.; Xu, S.; Lin, L.; Zhou, M.; Li, Z. Reversible wettability control of self-assembled TiO2 scaffolds on bacterial cellulose from superhydrophobicity to superhydrophilicity. Cellulose 2024, 31, 2907–2920. doi:10.1007/s10570-024-05761-8
  • Wang, J.; Li, F.; Pan, Y.; chen, f.; Huang, C.; Zhao, X. Robust Photopolymerized Superoleophobic/Superhydrophilic Mesh for Oil-Water Separation. Elsevier BV 2024. doi:10.2139/ssrn.4844768
  • Huang, H.; Ding, M.; Zhang, Y.; Zhang, S.; Ling, Y.; Wang, W.; Zhang, S. How organic switches grafting on TiO2 modifies the surface potentials: theoretical insights. RSC advances 2023, 13, 15148–15156. doi:10.1039/d3ra00537b
  • Zhang, C.; Wang, X. Study on the Cotton Fabrics with Photoinduced Reversibly Switchable Wettability. Journal of Nanotechnology 2023, 2023, 1–8. doi:10.1155/2023/8422293
  • Zhou, Z.; Ma, B.; Zhang, X.; Deng, C.; Yang, S.; Hu, C. Fabrication of superhydrophobic PDMS/TiO2 composite coatings with corrosion resistance. Surface Innovations 2023, 11, 195–208. doi:10.1680/jsuin.22.00013
  • Li, C.; Yang, J.; He, W.; Xiong, M.; Niu, X.; Li, X.; Yu, D. A Review on Fabrication and Application of Tunable Hybrid Micro–Nano Array Surfaces. Advanced Materials Interfaces 2023, 10. doi:10.1002/admi.202202160
  • Li, Y.; Shi, B.; Luan, X.; Hao, Z.; Wang, Y. Achieving reversible superhydrophobic-superhydrophilic switching of lignocellulosic paper surface with modified Nano-TiO2 coating. Polymer Testing 2022, 116, 107789. doi:10.1016/j.polymertesting.2022.107789
  • Zhou, H.; Li, Q.; Zhang, X.; Niu, H. Controllable Fabrication of Durable, Underliquid Superlyophobic Surfaces Based on the Lyophilic-Lyophobic Balance. Langmuir : the ACS journal of surfaces and colloids 2022, 38, 11962–11971. doi:10.1021/acs.langmuir.2c01718
  • Huo, T.; Li, F.; Jiang, K.; Kong, W.; Zhao, X.; Hao, Z.; Pan, Y. Fluorocarbon-Based Selective-Superwetting Nanofibrous Membranes with Ultraviolet-Driven Switchable Wettability for Oil–Water Separation. ACS Applied Nano Materials 2022, 5, 13018–13026. doi:10.1021/acsanm.2c02809
  • Liu, J.; Xiong, J.; Huang, Q.; Lu, T.; Chen, W.; Li, M. Eco-friendly synthesis of robust bioinspired cotton fabric with hybrid wettability for integrated water harvesting and water purification. Journal of Cleaner Production 2022, 350, 131524. doi:10.1016/j.jclepro.2022.131524
  • Liu, X.; Wei, Y.; Tao, F.; Zhang, X.; Gai, L.; Liu, L. All-water-based superhydrophobic coating with reversible wettability for oil-water separation and wastewater purification. Progress in Organic Coatings 2022, 165, 106726. doi:10.1016/j.porgcoat.2022.106726
  • Yuan, X.; Du, Y.; Su, J. Approaches and potentials for pool boiling enhancement with superhigh heat flux on responsive smart surfaces: A critical review. Renewable and Sustainable Energy Reviews 2022, 156, 111974. doi:10.1016/j.rser.2021.111974
  • Liu, J.; Li, M.; Luo, C.; Zhou, S.; Chen, W. Eco-friendly synthesis of self-reporting robust superhydrophobic coatings with damage sensitive photoluminescence. Chemical Engineering Journal 2022, 431, 134162. doi:10.1016/j.cej.2021.134162
  • Liu, Y.; Wang, Y.; Bian, D.; Wu, W.; Guo, P.; Zhao, Y. Impact of TiO2 nanoparticles and nanowires on corrosion protection performance of chemically bonded phosphate ceramic coatings. Ceramics International 2022, 48, 5091–5099. doi:10.1016/j.ceramint.2021.11.047
  • Zhao, M.; Guo, J.; Zhao, J.; Guo, Z.; Shrotriya, P.; Cui, Y.; Yang, Z. Heat Treatment Temperature Effect on Wettability of Laser-Machined Aluminum Surface. Journal of Materials Engineering and Performance 2021, 1–9.
Other Beilstein-Institut Open Science Activities