Graphene–graphite hybrid epoxy composites with controllable workability for thermal management

Idan Levy, Eyal Merary Wormser, Maxim Varenik, Matat Buzaglo, Roey Nadiv and Oren Regev
Beilstein J. Nanotechnol. 2019, 10, 95–104. https://doi.org/10.3762/bjnano.10.9

Supporting Information

Supporting Information File 1: Thermal conductivity measurement and elemental analysis.
Format: PDF Size: 945.5 KB Download

Cite the Following Article

Graphene–graphite hybrid epoxy composites with controllable workability for thermal management
Idan Levy, Eyal Merary Wormser, Maxim Varenik, Matat Buzaglo, Roey Nadiv and Oren Regev
Beilstein J. Nanotechnol. 2019, 10, 95–104. https://doi.org/10.3762/bjnano.10.9

How to Cite

Levy, I.; Wormser, E. M.; Varenik, M.; Buzaglo, M.; Nadiv, R.; Regev, O. Beilstein J. Nanotechnol. 2019, 10, 95–104. doi:10.3762/bjnano.10.9

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 688.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhang, M.; Zhao, G.; Zhao, Y.; Chen, X.; Li, Q. Exploring thermal interface materials for electronics via molecular dynamics simulations: A review. Materials Today Communications 2024, 41, 110964. doi:10.1016/j.mtcomm.2024.110964
  • Zha, J.-W.; Wang, F.; Wan, B. Polymer composites with high thermal conductivity: Theory, simulation, structure and interfacial regulation. Progress in Materials Science 2024, 148, 101362. doi:10.1016/j.pmatsci.2024.101362
  • Damircheli, M.; MajidiRad, A. The Influence of the Dispersion Method on the Morphological, Curing, and Mechanical Properties of NR/SBR Reinforced with Nano-Calcium Carbonate. Polymers 2023, 15, 2963. doi:10.3390/polym15132963
  • Zhang, Y.; Wang, K.; Sun, Y.; Xu, M.; Cheng, Z. Novel Biphasically and Reversibly Transparent Phase Change Material to Solve the Thermal Issues in Transparent Electronics. ACS applied materials & interfaces 2022, 14, 31245–31256. doi:10.1021/acsami.2c04974
  • Samsudin, S. S.; Abdul Majid, M. S.; Mohd Jamir, M. R.; Osman, A. F.; Jaafar, M.; Alshahrani, H. A. Physical, Thermal Transport, and Compressive Properties of Epoxy Composite Filled with Graphitic- and Ceramic-Based Thermally Conductive Nanofillers. Polymers 2022, 14, 1014. doi:10.3390/polym14051014
  • Sudhindra, S.; Ramesh, L.; Balandin, A. A. Graphene Thermal Interface Materials – State-of-the-Art and Application Prospects. IEEE Open Journal of Nanotechnology 2022, 3, 169–181. doi:10.1109/ojnano.2022.3223016
  • Lewis, J. S.; Perrier, T.; Barani, Z.; Kargar, F.; Balandin, A. A. Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications. Nanotechnology 2021, 32, 142003. doi:10.1088/1361-6528/abc0c6
  • Li, Z.; Wang, C.; Xia, L.; Yang, H.; Qin, C.; Zhong, B.; Xiong, L.; Huang, X.; Wen, G. Significant improvement of thermal conductivity for AlN/LAS composite with low thermal expansion. Ceramics International 2020, 46, 28668–28675. doi:10.1016/j.ceramint.2020.08.026
  • Phuhiangpa, N.; Ponloa, W.; Phongphanphanee, S.; Smitthipong, W. Performance of Nano- and Microcalcium Carbonate in Uncrosslinked Natural Rubber Composites: New Results of Structure-Properties Relationship. Polymers 2020, 12, 2002. doi:10.3390/polym12092002
  • Lewis, J. S.; Perrier, T.; Barani, Z.; Kargar, F.; Balandin, A. A. Review of Graphene-based Thermal Polymer Nanocomposites: Current State of the Art and Future Prospects. 2020.
  • Afik, N.; Yadgar, O.; Volison-Klimentiev, A.; Peretz-Damari, S.; Ohayon-Lavi, A.; Alatawna, A.; Yosefi, G.; Bitton, R.; Fuchs, N.; Regev, O. Sensing Exposure Time to Oxygen by Applying a Percolation-Induced Principle. Sensors (Basel, Switzerland) 2020, 20, 4465. doi:10.3390/s20164465
  • Charoeythornkhajhornchai, P.; Samthong, C. Morphology, rheological, and electrical properties of flexible epoxy/carbon composites cured by UV technique. Journal of Materials Research 2020, 35, 1874–1887. doi:10.1557/jmr.2020.156
  • Dmitriev, A. S. Hybrid Graphene Nanocomposites: Thermal Interface Materials and Functional Energy Materials. Graphene Production and Application; IntechOpen, 2020. doi:10.5772/intechopen.89631
  • Bahru, R.; Shaari, N.; Mohamed, M. A. Allotrope carbon materials in thermal interface materials and fuel cell applications: A review. International Journal of Energy Research 2019, 44, 2471–2498. doi:10.1002/er.5077
  • Samsudin, S. S.; Majid, M. A.; Ridzuan, M. J. M.; Osman, A. F. Thermal polymer composites of hybrid fillers. IOP Conference Series: Materials Science and Engineering 2019, 670, 012037. doi:10.1088/1757-899x/670/1/012037
  • Suherman, H.; Dweiri, R.; Mahyoedin, Y.; Duskiardi, D. Investigation of electrical-mechanical performance of epoxy-based nanocomposites filled with hybrid electrically conductive fillers. Materials Research Express 2019, 6, 115010. doi:10.1088/2053-1591/ab44d6
Other Beilstein-Institut Open Science Activities