Supporting Information
Movies of 3D tomographic reconstruction.
Supporting Information File 1: Electron tomography_3D reconstruction_hollow NW grown at 2 pA and 0.6 nC. | ||
Format: WMV | Size: 13.8 MB | Download |
Supporting Information File 2: Electron tomography_3D longitudinal_hollow NW grown at 2 pA and 0.6 nC. | ||
Format: WMV | Size: 1.8 MB | Download |
Supporting Information File 3: Electron tomography_longitudinal section_hollow NW grown at 2 pA and 0.6 nC. | ||
Format: WMV | Size: 2.3 MB | Download |
Supporting Information File 4: Electron tomography_transversal section_hollow NW grown at 2 pA and 0.6 nC. | ||
Format: WMV | Size: 1.8 MB | Download |
Supporting Information File 5: Electron tomography_3D reconstruction_hollow NW grown at 7 pA and 1.009 nC. | ||
Format: WMV | Size: 21.5 MB | Download |
Supporting Information File 6: Electron tomography_3D longitudinal_hollow NW grown at 7 pA and 1.009 nC. | ||
Format: WMV | Size: 3.7 MB | Download |
Supporting Information File 7: Electron tomography_transversal section_hollow NW grown at 7 pA and 1.009 nC. | ||
Format: WMV | Size: 3.8 MB | Download |
Cite the Following Article
3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing
Rosa Córdoba, Alfonso Ibarra, Dominique Mailly, Isabel Guillamón, Hermann Suderow and José María De Teresa
Beilstein J. Nanotechnol. 2020, 11, 1198–1206.
https://doi.org/10.3762/bjnano.11.104
How to Cite
Córdoba, R.; Ibarra, A.; Mailly, D.; Guillamón, I.; Suderow, H.; De Teresa, J. M. Beilstein J. Nanotechnol. 2020, 11, 1198–1206. doi:10.3762/bjnano.11.104
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 643.4 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Córdoba, R.; Fomin, V. M. Topological and chiral superconductor nanoarchitectures. Applied Physics Letters 2024, 124. doi:10.1063/5.0206198
- Petrov, Y. V.; Vyvenko, O. F. Field Ion Sources for Research and Modification of the Structure of Amorphous and Crystalline Materials. Crystallography Reports 2024, 69, 2–15. doi:10.1134/s1063774523601193
- Петров, Ю. В.; Вывенко, О. Ф. Автоионные источники для исследования и модификации структуры аморфных и кристаллических материалов. Kristallografiâ 2024, 69, 5–20. doi:10.31857/s0023476124010029
- Jungwirth, F.; Salvador-Porroche, A.; Porrati, F.; Jochmann, N. P.; Knez, D.; Huth, M.; Gracia, I.; Cané, C.; Cea, P.; De Teresa, J. M.; Barth, S. Gas-Phase Synthesis of Iron Silicide Nanostructures Using a Single-Source Precursor: Comparing Direct-Write Processing and Thermal Conversion. The journal of physical chemistry. C, Nanomaterials and interfaces 2024, 128, 2967–2977. doi:10.1021/acs.jpcc.3c08250
- Córdoba, R. Additive nanofabrication using focused ion and electron beams. Encyclopedia of Condensed Matter Physics; Elsevier, 2024; pp 448–464. doi:10.1016/b978-0-323-90800-9.00035-4
- Höflich, K.; Hobler, G.; Allen, F. I.; Wirtz, T.; Rius, G.; McElwee-White, L.; Krasheninnikov, A. V.; Schmidt, M.; Utke, I.; Klingner, N.; Osenberg, M.; Córdoba, R.; Djurabekova, F.; Manke, I.; Moll, P.; Manoccio, M.; De Teresa, J. M.; Bischoff, L.; Michler, J.; De Castro, O.; Delobbe, A.; Dunne, P.; Dobrovolskiy, O. V.; Frese, N.; Gölzhäuser, A.; Mazarov, P.; Koelle, D.; Möller, W.; Pérez-Murano, F.; Philipp, P.; Vollnhals, F.; Hlawacek, G. Roadmap for focused ion beam technologies. Applied Physics Reviews 2023, 10. doi:10.1063/5.0162597
- Jungwirth, F.; Porrati, F.; Knez, D.; Sistani, M.; Plank, H.; Huth, M.; Barth, S. Focused Ion Beam vs Focused Electron Beam Deposition of Cobalt Silicide Nanostructures Using Single-Source Precursors: Implications for Nanoelectronic Gates, Interconnects, and Spintronics. ACS Applied Nano Materials 2022, 5, 14759–14770. doi:10.1021/acsanm.2c03074
- Xia, D.; Notte, J. Nano‐Kirigami Structures and Branched Nanowires Fabricated by Focused Ion Beam‐Induced Milling, Bending, and Deposition. Advanced Materials Interfaces 2022, 9. doi:10.1002/admi.202200696
- Wang, K.; Ma, Q.; Qu, C.-X.; Zhou, H.-T.; Cao, M.; Wang, S.-D. Review on 3D Fabrication at Nanoscale. AUTEX Research Journal 2022, 23, 350–369. doi:10.2478/aut-2022-0014
- Fang, C.; Chai, Q.; Chen, Y.; Xing, Y.; Zhou, Z. The chiral coating on an achiral nanostructure by the secondary effect in focused ion beam induced deposition. Nanotechnology 2022, 33, 135301. doi:10.1088/1361-6528/ac4308
- Allen, F. I. A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope. Beilstein journal of nanotechnology 2021, 12, 633–664. doi:10.3762/bjnano.12.52
- Allen, F. I. Branched High Aspect Ratio Nanostructures Fabricated by Focused Helium Ion Beam Induced Deposition of an Insulator. Micromachines 2021, 12, 232. doi:10.3390/mi12030232