Influence of the magnetic nanoparticle coating on the magnetic relaxation time

Mihaela Osaci and Matteo Cacciola
Beilstein J. Nanotechnol. 2020, 11, 1207–1216. https://doi.org/10.3762/bjnano.11.105

Cite the Following Article

Influence of the magnetic nanoparticle coating on the magnetic relaxation time
Mihaela Osaci and Matteo Cacciola
Beilstein J. Nanotechnol. 2020, 11, 1207–1216. https://doi.org/10.3762/bjnano.11.105

How to Cite

Osaci, M.; Cacciola, M. Beilstein J. Nanotechnol. 2020, 11, 1207–1216. doi:10.3762/bjnano.11.105

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 697.5 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Pang, A. S.-R.; Liau, Z. Q. G.; Oh, J. Y.-L.; Srinivasan, D. K. Nanotechnology-Enhanced Orthopaedic Surgery. Journal of Nanotheranostics 2024, 5, 167–187. doi:10.3390/jnt5040011
  • Nnadozie, E. C.; Ogunwa, K. I.; Chukwuike, V. I.; Nnadozie, O. O.; Ehikhase, C. Synthesis and Characterization of Carbonaceous Materials for Medical Applications: A Comprehensive Review. BioMed 2024, 4, 464–492. doi:10.3390/biomed4040036
  • Khan, F.; Lahiri, B.; Srujana, M.; Vidya, R.; Philip, J. Induction heating of magnetic nanoparticles: role of thermo-physical properties of the coating moieties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 692, 133982. doi:10.1016/j.colsurfa.2024.133982
  • Koshev, N.; Kapralov, P.; Evstigneeva, S.; Leontyev, A.; Lutsenko, O.; Zharkov, M.; Pyataev, N.; Darwish, A.; Timin, A.; Ostras, M.; Radchenko, I.; Sukhorukov, G.; Vetoshko, P. YIG-Based Sensor System for Millisecond Time Range Magnetorelaxometry. IEEE transactions on bio-medical engineering 2024, 71, 1640–1650. doi:10.1109/tbme.2023.3346203
  • Van Khien, N.; Thi Anh Xuan, C.; Nguyen, L. H.; Nam, P. H.; Thi Thao, T. Role of citric acid coating in enhancing applicability of CoFe2O4 nanoparticles in antibacterial and hyperthermia. Materials Today Communications 2024, 38, 107982. doi:10.1016/j.mtcomm.2023.107982
  • Sadeghzadeh, H.; Dianat-Moghadam, H.; Del Bakhshayesh, A. R.; Mohammadnejad, D.; Mehdipour, A. A review on the effect of nanocomposite scaffolds reinforced with magnetic nanoparticles in osteogenesis and healing of bone injuries. Stem cell research & therapy 2023, 14, 194. doi:10.1186/s13287-023-03426-0
  • Osaci, M.; Cacciola, M. A study of Brownian relaxation time in magnetic nanofluids: a semi-analytical model. Multiscale and Multidisciplinary Modeling, Experiments and Design 2023, 7, 15–29. doi:10.1007/s41939-023-00174-9
  • Osaci, M.; Cacciola, M. Understanding the Effect of Magnetic Field and Nanoparticle Concentration on Brownian Relaxation Time in Magnetic Nanofluids: A Semi-Analytical Model. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2625923/v1
  • Pathania, K.; Sah, S. P.; Salunke, D. B.; Jain, M.; Yadav, A. K.; Yadav, V. G.; Pawar, S. V. Green synthesis of lignin-based nanoparticles as a bio-carrier for targeted delivery in cancer therapy. International journal of biological macromolecules 2023, 229, 684–695. doi:10.1016/j.ijbiomac.2022.12.323
  • Hadi, H.; Safari, R.; Shamlouei, H. R. Impact of calcination temperature on the spin–spin relaxation time (T2) of MgFe2O4nanoparticles (in vitro). Canadian Journal of Chemistry 2022, 100, 891–899. doi:10.1139/cjc-2022-0105
  • Torres, W.; Alcantara, A.; Bini, R.; Alvim, M.; Santos, M.; Cótica, L.; Rocco, D. Top-down and bottom-up approaches to obtain magnetic nanoparticle of Fe3O4 compound: Pulsed laser deposition and chemical route. Materials Chemistry and Physics 2022, 290, 126511. doi:10.1016/j.matchemphys.2022.126511
  • Bai, T.; Liu, X. Effect of magnetic field on the tribological performance of waterborne polyurethane coatings with magnetized graphene oxide. Progress in Organic Coatings 2022, 167, 106839. doi:10.1016/j.porgcoat.2022.106839
  • Eslami, P.; Albino, M.; Scavone, F.; Chiellini, F.; Morelli, A.; Baldi, G.; Cappiello, L.; Doumett, S.; Lorenzi, G.; Ravagli, C.; Caneschi, A.; Laurenzana, A.; Sangregorio, C. Smart Magnetic Nanocarriers for Multi-Stimuli On-Demand Drug Delivery. Nanomaterials (Basel, Switzerland) 2022, 12, 303. doi:10.3390/nano12030303
  • Vilas-Boas, V.; Carvalho, F.; Espiña, B. Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. Molecules (Basel, Switzerland) 2020, 25, 2874. doi:10.3390/molecules25122874
Other Beilstein-Institut Open Science Activities