Supporting Information
Supporting Information File 1: Referenced images and a supporting discussion of the probe particle simulations. | ||
Format: PDF | Size: 3.0 MB | Download |
Cite the Following Article
Atomic defect classification of the H–Si(100) surface through multi-mode scanning probe microscopy
Jeremiah Croshaw, Thomas Dienel, Taleana Huff and Robert Wolkow
Beilstein J. Nanotechnol. 2020, 11, 1346–1360.
https://doi.org/10.3762/bjnano.11.119
How to Cite
Croshaw, J.; Dienel, T.; Huff, T.; Wolkow, R. Beilstein J. Nanotechnol. 2020, 11, 1346–1360. doi:10.3762/bjnano.11.119
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 8.7 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Drewniok, J.; Walter, M.; Hang Ng, S. S.; Walus, K.; Wille, R. On-the-fly Defect-Aware Design of Circuits based on Silicon Dangling Bond Logic. In 2024 IEEE 24th International Conference on Nanotechnology (NANO), IEEE, 2024; pp 30–35. doi:10.1109/nano61778.2024.10628962
- Walter, M.; Croshaw, J.; Hang Ng, S. S.; Walus, K.; Wolkow, R.; Wille, R. Towards Atomic Defect-Aware Physical Design of Silicon Dangling Bond Logic on the H -Si $(100)-2\times 1$ Surface. In 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2024; pp 1–2. doi:10.23919/date58400.2024.10546683
- Pitters, J.; Croshaw, J.; Achal, R.; Livadaru, L.; Ng, S.; Lupoiu, R.; Chutora, T.; Huff, T.; Walus, K.; Wolkow, R. A. Atomically Precise Manufacturing of Silicon Electronics. ACS nano 2024, 18, 6766–6816. doi:10.1021/acsnano.3c10412
- Walter, M.; Drewniok, J.; Ng, S. S. H.; Walus, K.; Wille, R. Reducing the Complexity of Operational Domain Computation in Silicon Dangling Bond Logic. In Proceedings of the 18th ACM International Symposium on Nanoscale Architectures, ACM, 2023; pp 1–6. doi:10.1145/3611315.3633246
- Shaterzadeh-Yazdi, Z.; Kazemikhah, P. Multiple silicon dangling-bond charge qubits for quantum computing: a Hilbert-space analysis of the Hamiltonian. Physica Scripta 2023, 98, 85101–085101. doi:10.1088/1402-4896/ace0e2
- Gordon, O. doi:10.1002/9783527834044.ch45
- Ziatdinov, M.; Ghosh, A.; Wong, C. Y.; Kalinin, S. V. AtomAI framework for deep learning analysis of image and spectroscopy data in electron and scanning probe microscopy. Nature Machine Intelligence 2022, 4, 1101–1112. doi:10.1038/s42256-022-00555-8
- Ranawat, Y. S.; Jaques, Y. M.; Foster, A. S. Generalised deep-learning workflow for the prediction of hydration layers over surfaces. Journal of Molecular Liquids 2022, 367, 120571. doi:10.1016/j.molliq.2022.120571
- Wyrick, J.; Wang, X.; Namboodiri, P.; Kashid, R. V.; Fei, F.; Fox, J.; Silver, R. Enhanced Atomic Precision Fabrication by Adsorption of Phosphine into Engineered Dangling Bonds on H-Si Using STM and DFT. ACS nano 2022, 16, 19114–19123. doi:10.1021/acsnano.2c08162
- Inagaki, K.; Morikawa, Y.; Ohmi, H.; Yasutake, K.; Kakiuchi, H. Diffusion of excessively adsorbed hydrogen atoms on hydrogen terminated Si(100)(2×1) surface. AIP Advances 2021, 11, 085318. doi:10.1063/5.0058525
- Ranawat, Y. S.; Jaques, Y. M.; Foster, A. S. Predicting hydration layers on surfaces using deep learning. Nanoscale advances 2021, 3, 3447–3453. doi:10.1039/d1na00253h
- Šebera, J.; Zemen, J.; Jirásek, V.; Holovský, J.; Sychrovský, V. FTIR Measurement of the Hydrogenated Si(100) Surface: The Structure-Vibrational Interpretation by Means of Periodic DFT Calculation. The Journal of Physical Chemistry C 2021, 125, 9219–9228. doi:10.1021/acs.jpcc.0c11176
- Zuzak, R.; Szymonski, M.; Godlewski, S. Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface. Beilstein journal of nanotechnology 2021, 12, 232–241. doi:10.3762/bjnano.12.19
- Croshaw, J.; Huff, T.; Rashidi, M.; Wood, J. A.; Lloyd, E.; Pitters, J. L.; Wolkow, R. A. Ionic charge distributions in silicon atomic surface wires. Nanoscale 2021, 13, 3237–3245. doi:10.1039/d0nr08295c
- Pavlova, T. V. Hydrogen inserted into the Si(100)-2 × 1-H surface: a first-principles study. Physical chemistry chemical physics : PCCP 2020, 22, 21851–21857. doi:10.1039/d0cp03691a
- Rashidi, M.; Croshaw, J.; Mastel, K.; Tamura, M.; Hosseinzadeh, H.; Wolkow, R. A. Deep learning-guided surface characterization for autonomous hydrogen lithography. Machine Learning: Science and Technology 2020, 1, 025001. doi:10.1088/2632-2153/ab6d5e