Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

Tuba Evgin, Alpaslan Turgut, Georges Hamaoui, Zdenko Spitalsky, Nicolas Horny, Matej Micusik, Mihai Chirtoc, Mehmet Sarikanat and Maria Omastova
Beilstein J. Nanotechnol. 2020, 11, 167–179. https://doi.org/10.3762/bjnano.11.14

Supporting Information

Supporting Information File 1: FTIR spectroscopy and XRD patterns of HDPE/GnP nanocomposites with various concentrations of GnPs.
Format: PDF Size: 1.4 MB Download

Cite the Following Article

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization
Tuba Evgin, Alpaslan Turgut, Georges Hamaoui, Zdenko Spitalsky, Nicolas Horny, Matej Micusik, Mihai Chirtoc, Mehmet Sarikanat and Maria Omastova
Beilstein J. Nanotechnol. 2020, 11, 167–179. https://doi.org/10.3762/bjnano.11.14

How to Cite

Evgin, T.; Turgut, A.; Hamaoui, G.; Spitalsky, Z.; Horny, N.; Micusik, M.; Chirtoc, M.; Sarikanat, M.; Omastova, M. Beilstein J. Nanotechnol. 2020, 11, 167–179. doi:10.3762/bjnano.11.14

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 728.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Farashiani, M.; Shidpour, R.; Rajabi, M. Influence of exfoliation method of graphene on physical properties of graphene/High Density Polyethylene nanocomposites: Semiconductor‐like electrical conductivity, glass transition, and melting temperature. Polymer Engineering & Science 2024. doi:10.1002/pen.26979
  • Ma, J.; Dai, S.; Guo, Z.; Shang, L.; Ao, Y.; Jin, L. Impact of graphene oxide lateral sizes on the mechanical and thermal properties of carbon fiber composites. Polymer Composites 2024. doi:10.1002/pc.29087
  • Liu, Y.; Zhang, J.; Wang, X.; Liu, Y.; Hu, X.; Cao, C.; Qu, X.; Abdel-Magid, B. Breaking graphite through a ball-milling process: the thermal conductivity and mechanical properties of polyethylene composites. RSC advances 2024, 14, 27948–27956. doi:10.1039/d4ra03653k
  • Dallé, D.; Rossa Beltrami, L. V.; Borsoi, C.; Zattera, A. J. Effect of different nanofillers incorporation on HDPE/LDPE films nanocomposite. Journal of Reinforced Plastics and Composites 2024. doi:10.1177/07316844241239253
  • Roman Junior, C.; Pereira, I. M.; Dias, R. R.; Romanzini, D.; Zattera, A. J. Mechanical, thermal, and dynamic compression of high-density polyethylene nanocomposites with graphene, montmorillonite, and calcium carbonate. Polymer Bulletin 2024, 81, 9893–9910. doi:10.1007/s00289-024-05172-6
  • Costa, U. O.; da Costa Garcia Filho, F.; Gómez-del Río, T.; Lima Júnior, É. P.; Monteiro, S. N.; Nascimento, L. F. C. Characterization and ballistic performance of hybrid jute and aramid reinforcing graphite nanoplatelets in high-density polyethylene nanocomposites. Journal of Materials Research and Technology 2024, 28, 1570–1583. doi:10.1016/j.jmrt.2023.12.093
  • Koca, H. D.; Turgut, A.; Evgin, T.; Ateş, İ.; Chirtoc, M.; Šlouf, M.; Omastová, M. A comprehensive study on the thermal and electrical conductivity of EPDM composites with hybrid carbon fillers. Diamond and Related Materials 2023, 139, 110289. doi:10.1016/j.diamond.2023.110289
  • dos Anjos, E. G. R.; Brazil, T. R.; de Melo Morgado, G. F.; Antonelli, E.; Medeiros, N. C. d. F. L.; Santos, A. P.; Indrusiak, T.; Baldan, M. R.; Rezende, M. C.; Pessan, L. A.; Passador, F. R. Graphene related materials as effective additives for electrical and electromagnetic performance of epoxy nanocomposites. FlatChem 2023, 41, 100542. doi:10.1016/j.flatc.2023.100542
  • Lavi, A.; Ohayon-Lavi, A.; Leibovitch, Y.; Hayun, S.; Ruse, E.; Regev, O. Thermally Conductive Molten Salt for Thermal Energy Storage: Synergistic Effect of a Hybrid Graphite-Graphene Nanoplatelet Filler. Global challenges (Hoboken, NJ) 2023, 7, 2300053. doi:10.1002/gch2.202300053
  • Peng, Q.; Tan, X.; Xiong, X.; Wang, Y.; Novotná, J.; Shah, K. V.; Stempień, Z.; Periyasamy, A. P.; Kejzlar, P.; Venkataraman, M.; Militky, J. Insights into the large‐size graphene improvement effect of the mechanical properties on the epoxy/glass fabric composites. Polymer Composites 2023, 44, 7430–7443. doi:10.1002/pc.27635
  • Costa, U. O.; Garcia Filho, F. d. C.; Río, T. G.-D.; Rodrigues, J. G. P.; Simonassi, N. T.; Monteiro, S. N.; Nascimento, L. F. C. Mechanical Properties Optimization of Hybrid Aramid and Jute Fabrics-Reinforced Graphene Nanoplatelets in Functionalized HDPE Matrix Nanocomposites. Polymers 2023, 15, 2460. doi:10.3390/polym15112460
  • Kausar, A.; Ahmad, I.; Eisa, M. H.; Maaza, M. Graphene Nanocomposites in Space Sector—Fundamentals and Advancements. 2023, 9, 29. doi:10.3390/c9010029
  • Lavi, A.; Pyrikov, M.; Ohayon-Lavi, A.; Tadmor, R.; Shachar-Michaely, G.; Leibovitch, Y.; Ruse, E.; Vradman, L.; Regev, O. Total exfoliation of graphite in molten salts. Physical chemistry chemical physics : PCCP 2023, 25, 2618–2628. doi:10.1039/d2cp01613c
  • Costa, U. O.; Filho, F. d. C. G.; Gómez-del Río, T.; Júnior, É. P. L.; Monteiro, S. N.; Nascimento, L. F. C. Characterization and Ballistic Performance of Hybrid Jute and Aramid Reinforcing Graphite Nanoplatelets in High-Density Polyethylene Nanocomposites. Elsevier BV 2023. doi:10.2139/ssrn.4632297
  • Evgin, T.; Mičušík, M.; Machata, P.; Peidayesh, H.; Preťo, J.; Omastová, M. Morphological, Mechanical and Gas Penetration Properties of Elastomer Composites with Hybrid Fillers. Polymers 2022, 14, 4043. doi:10.3390/polym14194043
  • dos Anjos, E. G.; Moura, N. K.; Antonelli, E.; Baldan, M. R.; Gomes, N. A.; Braga, N. F.; Santos, A. P.; Rezende, M. C.; Pessan, L. A.; Passador, F. R. Role of adding carbon nanotubes in the electric and electromagnetic shielding behaviors of three different types of graphene in hybrid nanocomposites. Journal of Thermoplastic Composite Materials 2022, 36, 3209–3235. doi:10.1177/08927057221124483
  • Patrinou, A. I.; Tziviloglou, E.; Varoutoglou, A.; Favvas, E. P.; Mitropoulos, A. C.; Kyzas, G. Z.; Metaxa, Z. S. Cement Composites with Graphene Nanoplatelets and Recycled Milled Carbon Fibers Dispersed in Air Nanobubble Water. Nanomaterials (Basel, Switzerland) 2022, 12, 2786. doi:10.3390/nano12162786
  • Muthaiah, R.; Tarannum, F.; Danayat, S.; Annam, R. S.; Nayal, A. S.; Yedukondalu, N.; Garg, J. The superior effect of edge functionalization relative to basal plane functionalization of graphene in enhancing the thermal conductivity of polymer-graphene nanocomposites - a combined molecular dynamics and Green's functions study. Physical chemistry chemical physics : PCCP 2022, 24, 14640–14650. doi:10.1039/d2cp00146b
  • Al-Saleh, M. H.; Al-Sharman, M. M. Influence of graphene nanoplatelets geometrical characteristics on the properties of polylactic acid composites. Diamond and Related Materials 2022, 126, 109092. doi:10.1016/j.diamond.2022.109092
  • Singhal, M.; Jain, A.; Thomas, B.; Swain, A. Investigation of graphene nanoplatelets-deposited textured metal matrix composite plates for improved mechanical properties: a numerical approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2022, 44. doi:10.1007/s40430-022-03469-z
Other Beilstein-Institut Open Science Activities