High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

Meixia Wang, Jing Zhang, Xibin Yi, Benxue Liu, Xinfu Zhao and Xiaochan Liu
Beilstein J. Nanotechnol. 2020, 11, 240–251. https://doi.org/10.3762/bjnano.11.18

Supporting Information

Supporting Information File 1: Details of the preparation of the ASCs, photographs and SEM images of the cellulose aerogel, electrochemical tests and the LED photograph of the ASCs device.
Format: PDF Size: 841.6 KB Download

Cite the Following Article

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel
Meixia Wang, Jing Zhang, Xibin Yi, Benxue Liu, Xinfu Zhao and Xiaochan Liu
Beilstein J. Nanotechnol. 2020, 11, 240–251. https://doi.org/10.3762/bjnano.11.18

How to Cite

Wang, M.; Zhang, J.; Yi, X.; Liu, B.; Zhao, X.; Liu, X. Beilstein J. Nanotechnol. 2020, 11, 240–251. doi:10.3762/bjnano.11.18

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.5 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhang, C.; Zhu, L.; Geng, Y.; Li, Z.; Li, S.; Lian, Y.; Zhao, Z.; Huang, J.; Bai, J. Bacterial cellulose aerogel derived carbon supported CoO@NiO heterojunction for enhanced supercapacitor performance. Journal of Energy Storage 2025, 107, 114999. doi:10.1016/j.est.2024.114999
  • Yuvaraja, R.; Sarathkumar, S.; Gowsalya, V.; Anitha Juliet, S. P.; Veeralakshmi, S.; Kalaiselvam, S.; Gunasekar, G. H.; Nehru, S. Rational design of NiMoO4/carbon nanocomposites for high-performance supercapacitors: an in situ carbon incorporation approach. Energy Advances 2025. doi:10.1039/d4ya00438h
  • Shafti, D. M.; Dahlan, I.; Din, A. T. M. A review of the effectiveness of metal–organic frameworks in removing dye effluents. Water Practice & Technology 2024, 19, 4699–4733. doi:10.2166/wpt.2024.279
  • Tran, N.; Choi, H. W.; Tran, Q. N. A Review of Green Aerogel- and Xerogel-Based Electrodes for Supercapacitors. Polymers 2024, 16, 2848. doi:10.3390/polym16192848
  • Luo, L.; Qian, X.; Wang, X. Bimetallic metal-organic frameworks and their derivatives for electrochemical energy conversion and storage: Recent progress, challenges and perspective. Journal of Energy Storage 2024, 98, 113052. doi:10.1016/j.est.2024.113052
  • Dhandapani, P.; Nayak, P. K.; Maruthapillai, A. Soft-template assisted morphology tuning of NiMoO4 for hybrid supercapacitors. Electrochimica Acta 2024, 491, 144260. doi:10.1016/j.electacta.2024.144260
  • Haripriya, M.; Manimekala, T.; Dharmalingam, G.; Minakshi, M.; Sivasubramanian, R. Asymmetric Supercapacitors Based on ZnCo2O4 Nanohexagons and Orange Peel Derived Activated Carbon Electrodes. Chemistry, an Asian journal 2024, 19, e202400202. doi:10.1002/asia.202400202
  • Nagarajan, D.; Mohideen, M. M.; Radhamani, A. V. Tailoring the Supercapacitance of Hydrothermally Synthesized Co3O4 Nanorods via Ni‐Doping and Fabrication of Symmetric and Asymmetric Supercapacitors. Energy Technology 2023, 12. doi:10.1002/ente.202300728
  • Sağlam, S.; Türk, F. N.; Arslanoğlu, H. Use and applications of metal-organic frameworks (MOF) in dye adsorption: Review. Journal of Environmental Chemical Engineering 2023, 11, 110568. doi:10.1016/j.jece.2023.110568
  • Karthikeyan, A.; Mariappan, R.; Bakkiyaraj, R.; Krishnamoorthy, E. High electrochemical performance of Co3O4-PVDF-NMP-based supercapacitor electrode. Journal of Materials Science: Materials in Electronics 2023, 34. doi:10.1007/s10854-023-10147-w
  • Asif Rabbani, M.; Adeyemi Oladipo, A.; Kusaf, M. N and P Co‐doped Green Waste Derived Hierarchical Porous Carbon as a Supercapacitor Electrode for Energy Storage: Electrolyte Effects. ChemistrySelect 2023, 8. doi:10.1002/slct.202204288
  • Deka, S. Nanostructured mixed transition metal oxide spinels for supercapacitor applications. Dalton transactions (Cambridge, England : 2003) 2023, 52, 839–856. doi:10.1039/d2dt02733j
  • Francis, M. K.; Rajesh, K.; Bhargav, P. B.; Ahmed, N.; Balaji, C. Sustainability of current state-of-the-art supercapacitors: a case study. Smart Supercapacitors; Elsevier, 2023; pp 713–744. doi:10.1016/b978-0-323-90530-5.00009-5
  • Nargatti, K. I.; Subhedar, A. R.; Ahankari, S. S.; Grace, A. N.; Dufresne, A. Nanocellulose-based aerogel electrodes for supercapacitors: A review. Carbohydrate polymers 2022, 297, 120039. doi:10.1016/j.carbpol.2022.120039
  • Hakimyfard, A.; Samimifar, M.; Ostadjoola, S.; Khademinia, S.; Kafi‐Ahmadi, L. Lx‐β‐NiMoO4 (L = None, Al, V, Fe, Co) Nanocomposites: Facile Solid‐State Synthesis, Magnetic, Optical, and Electrochemical Properties. Crystal Research and Technology 2022, 57. doi:10.1002/crat.202200044
  • Pershaanaa, M.; Bashir, S.; Ramesh, S.; Ramesh, K. Every bite of Supercap: A brief review on construction and enhancement of supercapacitor. Journal of Energy Storage 2022, 50, 104599. doi:10.1016/j.est.2022.104599
  • Chen, J.; Zhang, H.; Wang, H.; Lin, Y.; Tang, Y.; Shao, H.; Zhang, S. Design and construction of hollow nanocube NiMoO4 electrode with high performance for asymmetric supercapacitor. Journal of Nanostructure in Chemistry 2022, 13, 79–88. doi:10.1007/s40097-021-00458-x
  • Liu, H.; Du, H.; Zheng, T.; Liu, K.; Ji, X.; Xu, T.; Zhang, X.; Si, C. Cellulose based composite foams and aerogels for advanced energy storage devices. Chemical Engineering Journal 2021, 426, 130817. doi:10.1016/j.cej.2021.130817
  • Liu, X.; Xiao, Y.; Zhang, Z.; You, Z.; Li, J.; Ma, D.; Li, B. Recent progress in metal organic frameworks@cellulose hybrids and their applications. Chinese Journal of Chemistry 2021, 39, 3462–3480. doi:10.1002/cjoc.202100534
  • Hasanpour, M.; Motahari, S.; Jing, D.; Hatami, M. Investigation of operation parameters on the removal efficiency of methyl orange pollutant by cellulose/zinc oxide hybrid aerogel. Chemosphere 2021, 284, 131320. doi:10.1016/j.chemosphere.2021.131320
Other Beilstein-Institut Open Science Activities