Supporting Information
Supporting Information File 1: Further experimental measurements, details of the pp-KPFM experiment, characterization of the solar cell device and derivation of the formula used to fit the pp-KPFM spectroscopy. | ||
Format: PDF | Size: 749.3 KB | Download |
Cite the Following Article
Implementation of data-cube pump–probe KPFM on organic solar cells
Benjamin Grévin, Olivier Bardagot and Renaud Demadrille
Beilstein J. Nanotechnol. 2020, 11, 323–337.
https://doi.org/10.3762/bjnano.11.24
How to Cite
Grévin, B.; Bardagot, O.; Demadrille, R. Beilstein J. Nanotechnol. 2020, 11, 323–337. doi:10.3762/bjnano.11.24
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.3 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Ponnan, S.; Mangalassery, S.; Desai, N. R.; Naraharisetty, S. R. G. Excited state energy relaxation dynamics in near-infrared dye via transient absorption spectroscopy. Journal of Optics 2024. doi:10.1007/s12596-023-01652-6
- Sui, J.; Liu, P.; Jia, Y.; Guo, R.; Bao, L.; Zhao, J.; Dong, L.; Wang, Y.; Lin, W.; Liu, Y.; Wang, J. Photomechaelectric Nanogenerators with Different Photoisomers and Dipole Units for Harvesting UV Light Energy. Small (Weinheim an der Bergstrasse, Germany) 2023, 20, e2307786. doi:10.1002/smll.202307786
- Sato, J.; Ishibashi, R.; Takahashi, T. Time-resolved electrostatic force microscopy under base-bias-level control. Measurement Science and Technology 2023, 35, 35005–035005. doi:10.1088/1361-6501/ad10e0
- Grévin, B.; Husainy, F.; Aldakov, D.; Aumaître, C. Dual-heterodyne Kelvin probe force microscopy. Beilstein journal of nanotechnology 2023, 14, 1068–1084. doi:10.3762/bjnano.14.88
- Eftekhari, Z.; Rezaei, N.; Stokkel, H.; Zheng, J.-Y.; Cerreta, A.; Hermes, I.; Nguyen, M.; Rijnders, G.; Saive, R. Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination. Beilstein journal of nanotechnology 2023, 14, 1059–1067. doi:10.3762/bjnano.14.87
- Yalcinkaya, Y.; Rohrbeck, P. N.; Schütz, E. R.; Fakharuddin, A.; Schmidt‐Mende, L.; Weber, S. A. Nanoscale Surface Photovoltage Spectroscopy. Advanced Optical Materials 2023, 12. doi:10.1002/adom.202301318
- Palewicz, M.; Sikora, A.; Piasecki, T.; Gacka, E.; Nitschke, P.; Gnida, P.; Jarząbek, B.; Gotszalk, T. Determination of the Electrical Parameters of Iodine-Doped Polymer Solar Cells at the Macro- and Nanoscale for Indoor Applications. Energies 2023, 16, 4741. doi:10.3390/en16124741
- Kilpatrick, J. I.; Kargin, E.; Rodriguez, B. J. Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water. Beilstein journal of nanotechnology 2022, 13, 922–943. doi:10.3762/bjnano.13.82
- Miyazaki, M.; Sugawara, Y.; Li, Y. J. Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy. Beilstein journal of nanotechnology 2022, 13, 712–720. doi:10.3762/bjnano.13.63
- Geng, J.; Zhang, H.; Meng, X.; Gao, H.; Rong, W.; Xie, H. Three-Dimensional Kelvin Probe Force Microscopy. ACS applied materials & interfaces 2022, 14, 32719–32728. doi:10.1021/acsami.2c07645
- Aubriet, V.; Courouble, K.; Bardagot, O.; Demadrille, R.; Borowik, Ł.; Grévin, B. Hidden surface photovoltages revealed by pump probe KPFM. Nanotechnology 2022, 33, 225401. doi:10.1088/1361-6528/ac5542
- Aubriet, V.; Courouble, K.; Bardagot, O.; Demadrille, R.; Borowik, L.; Grévin, B. Hidden surface photovoltages revealed by pump probe KPFM. 2021.
- Alosaimi, G.; Shin, S. J.; Chin, R. L.; Kim, J. H.; Yun, J. S.; Seidel, J. Probing Charge Carrier Properties and Ion Migration Dynamics of Indoor Halide Perovskite PV Devices Using Top- and Bottom-Illumination SPM Studies. Advanced Energy Materials 2021, 11, 2101739. doi:10.1002/aenm.202101739
- Toth, D.; Hailegnaw, B.; Richheimer, F.; Castro, F. A.; Kienberger, F.; Scharber, M. C.; Wood, S.; Gramse, G. Nanoscale Charge Accumulation and Its Effect on Carrier Dynamics in Tri-cation Perovskite Structures. ACS applied materials & interfaces 2020, 12, 48057–48066. doi:10.1021/acsami.0c10641
- Lombana, A.; Battaglini, N.; Zrig, S.; Lagoute, J.; Chevillot-Biraud, A.; Lang, P. Nanoscale Mapping of Photo‐Induced Charge Carriers Generated at Interfaces of a Donor/Acceptor 2D‐Assembly by Light‐Assisted‐Scanning Tunneling Microscopy. Advanced Materials Interfaces 2020, 7, 2001325. doi:10.1002/admi.202001325
- Toth, D.; Hailegnaw, B.; Richheimer, F.; Wood, S.; Castro, F. A.; Kienberger, F.; Scharber, M. C.; Gramse, G. Nanoscale charge accumulation and its effect on carrier dynamics in tri-cation perovskite structures. 2020.