An investigation on the drag reduction performance of bioinspired pipeline surfaces with transverse microgrooves

Weili Liu, Hongjian Ni, Peng Wang and Yi Zhou
Beilstein J. Nanotechnol. 2020, 11, 24–40. https://doi.org/10.3762/bjnano.11.3

Cite the Following Article

An investigation on the drag reduction performance of bioinspired pipeline surfaces with transverse microgrooves
Weili Liu, Hongjian Ni, Peng Wang and Yi Zhou
Beilstein J. Nanotechnol. 2020, 11, 24–40. https://doi.org/10.3762/bjnano.11.3

How to Cite

Liu, W.; Ni, H.; Wang, P.; Zhou, Y. Beilstein J. Nanotechnol. 2020, 11, 24–40. doi:10.3762/bjnano.11.3

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.3 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Chen, D.; Cui, X.; Chen, H. Flow field characteristics and drag reduction performance of high–low velocity stripes on the biomimetic imbricated fish scale surfaces. Biosurface and Biotribology 2024, 10, 132–141. doi:10.1049/bsb2.12083
  • Psomoglou, I.; Goktepe, B.; Crayford, A.; Bowen, P.; Morris, S.; Jones, N. Influence of AM Generated Burner Surface Roughness on NO x Emissions and Operability of Hydrogen-Rich Fuels. Combustion Science and Technology 2024, 1–20. doi:10.1080/00102202.2024.2390699
  • Li, L.; Qaiser, Z.; Yang, B.; Zhang, Z.; Fu, K. Investigation of the resistance characteristics of the transverse groove for laminar flows. Ocean Engineering 2024, 303, 117743. doi:10.1016/j.oceaneng.2024.117743
  • Graybill, M. T.; Xu, N. W. Experimental Studies of Bioinspired Shark Denticles for Drag Reduction. Integrative and comparative biology 2024, 64, 742–752. doi:10.1093/icb/icae086
  • Chen, Y.; Hu, Y.; Zhang, L.-W. Effective Underwater Drag Reduction: A Butterfly Wing Scale-Inspired Superhydrophobic Surface. ACS applied materials & interfaces 2024, 16, 26954–26964. doi:10.1021/acsami.4c04272
  • Xiao, Y.; Cai, Y.; Sun, C.; Cui, G.; Xu, Z.; Wang, P.; Jia, L. Bionic pipeline transport characteristics with transverse protuberances in slurry shield circulation system based on CFD-DEM. Powder Technology 2024, 432, 119133. doi:10.1016/j.powtec.2023.119133
  • Li, Z.; Zuo, Y.; Zhang, H.; He, L.; Sun, E.; Long, Y.; Zhang, L.; Zhang, P. A Numerical Study on the Influence of Transverse Grooves on the Aerodynamic Performance of Micro Air Vehicles Airfoils. Applied Sciences 2023, 13, 12371. doi:10.3390/app132212371
  • Jing, R.; Gao, R.; Liu, M.; Li, A.; Yu, S.; Xie, X.; Chen, C.; Zhou, M. A variable gradient descent shape optimization method for transition tee resistance reduction. Building and Environment 2023, 244, 110735. doi:10.1016/j.buildenv.2023.110735
  • Xu, S.; Lin, J.; Yu, Y.; Wang, H.; Lu, J. Laminar drag reduction in a closed channel using bioinspired textured surfaces. Surface Innovations 2023, 11, 416–428. doi:10.1680/jsuin.22.01069
  • Yu, H.; Liu, H.; Zhang, S.; Zhang, J.; Han, Z. Research progress on coping strategies for the fluid-solid erosion wear of pipelines. Powder Technology 2023, 422, 118457. doi:10.1016/j.powtec.2023.118457
  • Li, Z.; Gu, Y.; Yu, L.; Yin, Z.; Wang, W.; Wu, D.; Mou, J.; Zheng, S. Effect of V-Shaped Groove Microstructure on Blood Flow Resistance in Bionic Artificial Blood Vessels. Applied Bionics and Biomechanics 2023, 2023, 1–14. doi:10.1155/2023/7861408
  • Alsaedi, S. S.; Yousif, Z.; Alazzawi, S.; Radhi, A. A.; Filip, P. An experimental study to advance flow in the pipeline network employing nanoparticle agents. In AIP Conference Proceedings, AIP Publishing, 2023; pp 30016 ff. doi:10.1063/5.0144307
  • Li, Z.; He, L.; Zuo, Y.; Meng, B. Analytic Solution of Optimal Aspect Ratio of Bionic Transverse V-Groove for Drag Reduction Based on Vorticity Kinetics. Aerospace 2022, 9, 749. doi:10.3390/aerospace9120749
  • Zhang, J.; Liu, Y.; Qin, X.; Dou, Z.; Meng, Q.; Xu, X.; Lv, J. Optimization design and drag reduction characteristics of bionic borehole heat exchanger. Frontiers in Energy Research 2022, 10. doi:10.3389/fenrg.2022.1024623
  • Wu, L.; Luo, G.; He, F.; Chen, L.; Wang, S.; Fan, X. Bionic research on Paramisgurnus dabryanus scales for drag reduction. RSC advances 2022, 12, 22226–22235. doi:10.1039/d2ra04073e
  • Rostami, S.; Garipcan, B. Evolution of antibacterial and antibiofouling properties of sharkskin-patterned surfaces. Surface Innovations 2022, 10, 165–190. doi:10.1680/jsuin.21.00055
  • Li, Z.; He, L.; Zheng, Y. Quasi-Analytical Solution of Optimum and Maximum Depth of Transverse V-Groove for Drag Reduction at Different Reynolds Numbers. Symmetry 2022, 14, 342. doi:10.3390/sym14020342
  • Dev, A. A.; Dunne, P.; Hermans, T. M.; Doudin, B. Fluid Drag Reduction by Magnetic Confinement. Langmuir : the ACS journal of surfaces and colloids 2022, 38, 719–726. doi:10.1021/acs.langmuir.1c02617
  • Chen, T.; Wei, X.; Chen, Z.; Morin, D.; Alvarez, S. V.; Yoon, Y.; Huang, Y. Designing energy-efficient separation membranes: Knowledge from nature for a sustainable future. Advanced Membranes 2022, 2, 100031. doi:10.1016/j.advmem.2022.100031
  • Qin, L.; Ma, Z.; Sun, H.; Lu, S.; Zeng, Q.; Zhang, Y.; Dong, G. Drag reduction and antifouling properties of non-smooth surfaces modified with ZIF-67. Surface and Coatings Technology 2021, 427, 127836. doi:10.1016/j.surfcoat.2021.127836
Other Beilstein-Institut Open Science Activities