Supporting Information
Supporting Information File 1: Additional experimental data. | ||
Format: PDF | Size: 1.4 MB | Download |
Cite the Following Article
Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions
Secil Öztürk, Yu-Xuan Xiao, Dennis Dietrich, Beatriz Giesen, Juri Barthel, Jie Ying, Xiao-Yu Yang and Christoph Janiak
Beilstein J. Nanotechnol. 2020, 11, 770–781.
https://doi.org/10.3762/bjnano.11.62
How to Cite
Öztürk, S.; Xiao, Y.-X.; Dietrich, D.; Giesen, B.; Barthel, J.; Ying, J.; Yang, X.-Y.; Janiak, C. Beilstein J. Nanotechnol. 2020, 11, 770–781. doi:10.3762/bjnano.11.62
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 498.6 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Karnitski, A.; Natarajan, L.; Lee, Y. J.; Kim, S.-S. Controlled chemical transformation of lignin by nitric acid treatment and carbonization. International journal of biological macromolecules 2024, 281, 136408. doi:10.1016/j.ijbiomac.2024.136408
- Avalos-Ballester, V.; Acosta, B.; Smolentseva, E. Remarkable Enhancement of Catalytic Reduction of Nitrophenol Isomers by Decoration of Ni Nanosheets with Cu Species. ACS omega 2024, 9, 37981–37994. doi:10.1021/acsomega.4c04762
- Samanta, A.; Kumar, M. M.; Ghora, S.; Ghatak, A.; Bhattacharya, S.; Kumar, V.; Raj, C. R. Tuning the oxygen electrocatalytic performance of metal-doped graphitic carbon nitride for the development of zinc-air battery. Journal of Chemical Sciences 2024, 136. doi:10.1007/s12039-024-02295-1
- Mathur, N.; Mahala, S.; Khorwal, A. K.; Bitla, Y.; Goswami, B.; Roy, P.; Joshi, H. Magnetic Nickel Nanoparticles Supported on Oxidized Charcoal as a Recoverable Catalyst for N-Alkylation of Amines with Alcohols. ACS Applied Nano Materials 2024, 7, 11159–11169. doi:10.1021/acsanm.4c00492
- Li, R.; Lu, J.; Li, C.; Cui, Y.; Lv, D.; Chen, Y.; Wei, Y.; Wei, H.; Liang, B.; Bu, J. Mesoporous vanadium nitride nanofiber@N-doped carbon with excellent microwave absorption and anti-corrosion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 686, 133420. doi:10.1016/j.colsurfa.2024.133420
- Dashtian, K.; Shahsavarifar, S.; Usman, M.; Joseph, Y.; Ganjali, M. R.; Yin, Z.; Rahimi-Nasrabadi, M. A comprehensive review on advances in polyoxometalate based materials for electrochemical water splitting. Coordination Chemistry Reviews 2024, 504, 215644. doi:10.1016/j.ccr.2023.215644
- Punzi, E.; Nguyen, X. T.; Pitzalis, E.; Mandoli, A.; Onor, M.; Marelli, M.; Poggini, L.; Tuci, G.; Giambastiani, G.; Evangelisti, C. Ultrasmall Nickel Nanoparticles on a Covalent Triazine Framework for Ammonia Borane Hydrolysis and Transfer Hydrogenation of Nitroaromatics. ACS Applied Nano Materials 2024, 7, 6916–6926. doi:10.1021/acsanm.3c05844
- Rademacher, L.; Beglau, T. H. Y.; Ali, B.; Sondermann, L.; Strothmann, T.; Boldog, I.; Barthel, J.; Janiak, C. Ruthenium nanoparticles on covalent triazine frameworks incorporating thiophene for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A 2024, 12, 2093–2109. doi:10.1039/d3ta05597c
- Shah, S. S. A.; Javed, M. S.; Najam, T.; Nazir, M. A.; ur Rehman, A.; Rauf, A.; Sohail, M.; Verpoort, F.; Bao, S.-J. Covalent Organic Frameworks (COFs) for heterogeneous catalysis: Recent trends in design and synthesis with structure-activity relationship. Materials Today 2023, 67, 229–255. doi:10.1016/j.mattod.2023.05.023
- Zheng, Y.; Khan, N. A.; Ni, X.; Zhang, K. A. I.; Shen, Y.; Huang, N.; Kong, X. Y.; Ye, L. Emerging covalent triazine framework-based nanomaterials for electrochemical energy storage and conversion. Chemical communications (Cambridge, England) 2023, 59, 6314–6334. doi:10.1039/d3cc00712j
- Wang, S.; Song, Y.; Wang, Z.; Xie, W.; Zhang, S.; Yao, C.; Zhao, Y.; Xu, Y. Facile synthesis of elemental sulfur-mediated fluorine-containing covalent triazine frameworks and their performance in lithium–sulfur batteries. New Journal of Chemistry 2023, 47, 6951–6957. doi:10.1039/d3nj00385j
- Dymerska, A. G.; Środa, B.; Zielińska, B.; Mijowska, E. In situ insight into the low-temperature promotion of ZIF-67 in electrocatalytic oxygen evolution reaction. Materials & Design 2023, 226, 111637. doi:10.1016/j.matdes.2023.111637
- Morais Ferreira, R. K.; Ben Miled, M.; Nishihora, R. K.; Christophe, N.; Carles, P.; Motz, G.; Bouzid, A.; Machado, R.; Masson, O.; Iwamoto, Y.; Célérier, S.; Habrioux, A.; Bernard, S. Low temperature in situ immobilization of nanoscale fcc and hcp polymorphic nickel particles in polymer-derived Si-C-O-N(H) to promote electrocatalytic water oxidation in alkaline media. Nanoscale advances 2023, 5, 701–710. doi:10.1039/d2na00821a
- Florent, M.; Bandosz, T. J. Carbon Surface-Influenced Heterogeneity of Ni and Co Catalytic Sites as a Factor Affecting the Efficiency of Oxygen Reduction Reaction. Nanomaterials (Basel, Switzerland) 2022, 12, 4432. doi:10.3390/nano12244432
- Rana, A. G.; Schwarze, M.; Tasbihi, M.; Sala, X.; García-Antón, J.; Minceva, M. Influence of Cocatalysts (Ni, Co, and Cu) and Synthesis Method on the Photocatalytic Activity of Exfoliated Graphitic Carbon Nitride for Hydrogen Production. Nanomaterials (Basel, Switzerland) 2022, 12, 4006. doi:10.3390/nano12224006
- Fatimah, I.; Wijayanti, H. K.; Ramanda, G. D.; Tamyiz, M.; Doong, R.-A.; Sagadevan, S. Nanocomposite of Nickel Nanoparticles-Impregnated Biochar from Palm Leaves as Highly Active and Magnetic Photocatalyst for Methyl Violet Photocatalytic Oxidation. Molecules (Basel, Switzerland) 2022, 27, 6871. doi:10.3390/molecules27206871
- ur Rehman, I.; Zhang, J.; Chen, J.; Wang, R. In situ derived Ni-N-CNTs from ZIF-8 crystals as efficient electrocatalysts for oxygen reduction reaction. Inorganic Chemistry Communications 2022, 144, 109922. doi:10.1016/j.inoche.2022.109922
- Rademacher, L.; Beglau, T. H. Y.; Heinen, T.; Barthel, J.; Janiak, C. Microwave-assisted synthesis of iridium oxide and palladium nanoparticles supported on a nitrogen-rich covalent triazine framework as superior electrocatalysts for the hydrogen evolution and oxygen reduction reaction. Frontiers in chemistry 2022, 10, 945261. doi:10.3389/fchem.2022.945261
- Sondermann, L.; Jiang, W.; Shviro, M.; Spieß, A.; Woschko, D.; Rademacher, L.; Janiak, C. Nickel-Based Metal-Organic Frameworks as Electrocatalysts for the Oxygen Evolution Reaction (OER). Molecules (Basel, Switzerland) 2022, 27, 1241. doi:10.3390/molecules27041241
- Woitassek, D.; Lerch, S.; Jiang, W.; Shviro, M.; Roitsch, S.; Strassner, T.; Janiak, C. The Facile Deposition of Pt Nanoparticles on Reduced Graphite Oxide in Tunable Aryl Alkyl Ionic Liquids for ORR Catalysts. Molecules (Basel, Switzerland) 2022, 27, 1018. doi:10.3390/molecules27031018