Supporting Information
The Supporting Information includes a directory containing all necessary MATLAB scripts used for AFM-SFS file inversion, and an instructional document to explain the operation and settings available in the script. Additionally, the full derivations mentioned in section “Theoretical Background” are included in Supporting Information File 3.
Supporting Information File 1: Readme file for MATLAB script operation. | ||
Format: PDF | Size: 800.9 KB | Download |
Supporting Information File 2: Compressed directory containing the MATLAB script and supporting functions. | ||
Format: ZIP | Size: 1.8 MB | Download |
Supporting Information File 3: More detailed derivations of the relationships presented in section ‘‘Theoretical Background’’. | ||
Format: PDF | Size: 319.5 KB | Download |
Cite the Following Article
Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy
Cameron H. Parvini, M. A. S. R. Saadi and Santiago D. Solares
Beilstein J. Nanotechnol. 2020, 11, 922–937.
https://doi.org/10.3762/bjnano.11.77
How to Cite
Parvini, C. H.; Saadi, M. A. S. R.; Solares, S. D. Beilstein J. Nanotechnol. 2020, 11, 922–937. doi:10.3762/bjnano.11.77
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 518.5 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Torskaya, E. V.; Yakovenko, A. A.; Shkaley, I. V.; Svistkov, A. L. An Indentation Study of the Temperature-Dependent Properties of Modified Polyurethanes. Physical Mesomechanics 2023, 26, 505–513. doi:10.1134/s102995992305003x
- McCraw, M. R.; Uluutku, B.; Solomon, H. D.; Anderson, M. S.; Sarkar, K.; Solares, S. D. Optimizing the accuracy of viscoelastic characterization with AFM force-distance experiments in the time and frequency domains. Soft matter 2023, 19, 451–467. doi:10.1039/d2sm01331b
- Orusbiev, A. R.; Alunkacheva, T. G.; Charandaeva, M. S.; Kireeva, B. S.; Gadzhiev, M. F.; Zelenetckii, V. G. Study of the Structural and Mechanical Properties of Erythrocyte Membranes Using Atomic Force Microscopy. Archives of Pharmacy Practice 2023, 14, 70–74. doi:10.51847/ygaxhi9jbr
- Guo, K.; Zheng, M.; Ren, Y. Data Analysis of the Effect of Different Nanomaterials on Antislide Pile Performance in Railway Landslides. Advances in Materials Science and Engineering 2022, 2022, 1–13. doi:10.1155/2022/7090309
- Zhang, X.; Wang, C.; Wu, T.; Wang, Y. Application of Intelligent Recognition Technology in Recognition of Mechanical Material Structure. Wireless Communications and Mobile Computing 2022, 2022, 1–7. doi:10.1155/2022/8909122
- Parvini, C. H.; Cartagena-Rivera, A. X.; Solares, S. D. Viscoelastic parameterization of human skin cells characterize material behavior at multiple timescales. Communications biology 2022, 5, 17. doi:10.1038/s42003-021-02959-5
- Sanchez, J. G.; Espinosa, F. M.; Miguez, R.; Garcia, R. The viscoelasticity of adherent cells follows a single power-law with distinct local variations within a single cell and across cell lines. Nanoscale 2021, 13, 16339–16348. doi:10.1039/d1nr03894j
- Uluutku, B.; López-Guerra, E. A.; Solares, S. D. A new method for obtaining model-free viscoelastic material properties from atomic force microscopy experiments using discrete integral transform techniques. Beilstein journal of nanotechnology 2021, 12, 1063–1077. doi:10.3762/bjnano.12.79
- Liu, Y.; Zhang, Y.; Cui, M.; Zhao, X.; Sun, M.; Zhao, X. A Cell's Viscoelasticity Measurement Method Based on the Spheroidization Process of Non-Spherical Shaped Cell. Sensors (Basel, Switzerland) 2021, 21, 5561. doi:10.3390/s21165561
- Parvini, C. H.; Cartagena-Rivera, A. X.; Solares, S. D. Viscoelastic Parameterization of Human Skin Cells to Characterize Material Behavior at Multiple Timescales. Cold Spring Harbor Laboratory 2021. doi:10.1101/2021.07.09.451793
- Saadi, M. A. S. R.; Uluutku, B.; Parvini, C. H.; Solares, S. D. Soft sample deformation, damage and induced electromechanical property changes in contact- and tapping-mode atomic force microscopy. Surface Topography: Metrology and Properties 2020, 8, 045004. doi:10.1088/2051-672x/abb888
- López-Guerra, E. A.; Solares, S. D. On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges. Beilstein journal of nanotechnology 2020, 11, 1409–1418. doi:10.3762/bjnano.11.125
- Garcia, R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chemical Society reviews 2020, 49, 5850–5884. doi:10.1039/d0cs00318b