A review of demodulation techniques for multifrequency atomic force microscopy

David M. Harcombe, Michael G. Ruppert and Andrew J. Fleming
Beilstein J. Nanotechnol. 2020, 11, 76–91. https://doi.org/10.3762/bjnano.11.8

Cite the Following Article

A review of demodulation techniques for multifrequency atomic force microscopy
David M. Harcombe, Michael G. Ruppert and Andrew J. Fleming
Beilstein J. Nanotechnol. 2020, 11, 76–91. https://doi.org/10.3762/bjnano.11.8

How to Cite

Harcombe, D. M.; Ruppert, M. G.; Fleming, A. J. Beilstein J. Nanotechnol. 2020, 11, 76–91. doi:10.3762/bjnano.11.8

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 175.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Xu, K.; Xie, Y.; Ma, S.; Liang, Q.; Shi, Z. Heterodyne High-Harmonic Electrostatic Force Microscopy with Improved Spatial Resolution for Nanoscale Identification of Metallic/Semiconducting Carbon Nanotubes. ACS applied materials & interfaces 2024, 16, 39867–39875. doi:10.1021/acsami.4c08163
  • Wu, S.; Gu, J.; Li, R.; Tang, Y.; Gao, L.; An, C.; Deng, Q.; Zhao, L.; Hu, N. Progress on mechanical and tribological characterization of 2D materials by AFM force spectroscopy. Friction 2024, 12, 2627–2656. doi:10.1007/s40544-024-0864-9
  • Xia, F.; Rangelow, I. W.; Youcef-Toumi, K. AFM Electronics and Signal Processing. Active Probe Atomic Force Microscopy; Springer International Publishing, 2024; pp 227–248. doi:10.1007/978-3-031-44233-9_8
  • Alemansour, H.; Reza Moheimani, S. O. Model-Based Control of the Scanning Tunneling Microscope: Enabling New Modes of Imaging, Spectroscopy, and Lithography. IEEE Control Systems 2024, 44, 46–66. doi:10.1109/mcs.2023.3329923
  • Fozouni, Y.; Larson, E. C.; Gnade, B. Towards automated molecular detection through simulated generation of CMOS-based rotational spectroscopy. Heliyon 2023, 9, e17055. doi:10.1016/j.heliyon.2023.e17055
  • Guo, Z.-K.; Li, Y.-G.; Yu, B.-C.; Zhou, S.-C.; Meng, Q.-Y.; Lu, X.-X.; Huang, Y.-F.; Liu, G.-P.; Lu, J. Research progress of lock-in amplifiers. Acta Physica Sinica 2023, 72, 224206. doi:10.7498/aps.72.20230579
  • Wang, Z.; Shi, X.; Wang, W.; Cai, W. High-Performance Digital Lock-In Amplifier Module Based on an Open-Source Red Pitaya Platform: Implementation and Applications. IEEE Transactions on Instrumentation and Measurement 2023, 72, 1–14. doi:10.1109/tim.2022.3221746
  • Romero-Fierro, D.; Bustamante-Torres, M.; Bravo-Plascencia, F.; Esquivel-Lozano, A.; Ruiz, J.-C.; Bucio, E. Recent Trends in Magnetic Polymer Nanocomposites for Aerospace Applications: A Review. Polymers 2022, 14, 4084. doi:10.3390/polym14194084
  • Çelik, D. Lyapunov based harmonic compensation and charging with three phase shunt active power filter in electrical vehicle applications. International Journal of Electrical Power & Energy Systems 2022, 136, 107564. doi:10.1016/j.ijepes.2021.107564
  • Ragazzon, M. R. P.; Messineo, S.; Gravdahl, J. T.; Harcombe, D. M.; Ruppert, M. G. The Generalized Lyapunov Demodulator: High-Bandwidth, Low-Noise Amplitude and Phase Estimation. IEEE Open Journal of Control Systems 2022, 1, 69–84. doi:10.1109/ojcsys.2022.3181111
  • Gisbert, V. G.; Garcia, R. Accurate Wide-Modulus-Range Nanomechanical Mapping of Ultrathin Interfaces with Bimodal Atomic Force Microscopy. ACS nano 2021, 15, 20574–20581. doi:10.1021/acsnano.1c09178
  • Jaufenthaler, A.; Kornack, T. W.; Lebedev, V.; Limes, M.; Körber, R.; Liebl, M.; Baumgarten, D. Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles. Sensors (Basel, Switzerland) 2021, 21, 1212. doi:10.3390/s21041212
  • Gupta, S.; Wang, E.; Derrien, S.; Wilson, J. W. DR-RINS: Digital real-time relative intensity noise suppressor for pump-probe spectroscopy and microscopy. The Review of scientific instruments 2021, 92, 023704. doi:10.1063/5.0032376
  • Payam, A. F.; Biglarbeigi, P.; Morelli, A.; Lemoine, P.; McLaughlin, J.; Finlay, D. Data acquisition and imaging using wavelet transform: a new path for high speed transient force microscopy. Nanoscale advances 2021, 3, 383–398. doi:10.1039/d0na00531b
  • Jolin, S.; Borgani, R.; Tholen, M.; Forchheimer, D.; Haviland, D. B. Calibration of mixer amplitude and phase imbalance in superconducting circuits. The Review of scientific instruments 2020, 91, 124707. doi:10.1063/5.0025836
  • Flater, E. E.; Mugdha, A. C.; Gupta, S.; Hudson, W. A.; Fahrenkamp, A. A.; Killgore, J. P.; Wilson, J. W. Error estimation and enhanced stiffness sensitivity in contact resonance force microscopy with a multiple arbitrary frequency lock-in amplifier (MAFLIA). Measurement Science and Technology 2020, 31, 115009. doi:10.1088/1361-6501/ab97f9
  • Abramovitch, D. Y. 2020 IEEE Conference on Control Technology and Applications (CCTA); IEEE, 2020; pp 474–491. doi:10.1109/ccta41146.2020.9206161
  • Garcia, R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chemical Society reviews 2020, 49, 5850–5884. doi:10.1039/d0cs00318b
  • Ahmed, H.; Benbouzid, M. Gradient Estimator-Based Amplitude Estimation for Dynamic Mode Atomic Force Microscopy: Small-Signal Modeling and Tuning. Sensors (Basel, Switzerland) 2020, 20, 2703. doi:10.3390/s20092703
Other Beilstein-Institut Open Science Activities