Cite the Following Article
Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles
Andrea Brognara, Ili F. Mohamad Ali Nasri, Beatrice R. Bricchi, Andrea Li Bassi, Caroline Gauchotte-Lindsay, Matteo Ghidelli and Nathalie Lidgi-Guigui
Beilstein J. Nanotechnol. 2020, 11, 1026–1035.
https://doi.org/10.3762/bjnano.11.87
How to Cite
Brognara, A.; Mohamad Ali Nasri, I. F.; Bricchi, B. R.; Li Bassi, A.; Gauchotte-Lindsay, C.; Ghidelli, M.; Lidgi-Guigui, N. Beilstein J. Nanotechnol. 2020, 11, 1026–1035. doi:10.3762/bjnano.11.87
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.4 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Afshar, M.; Ghosh, S.; Mascaretti, L.; Kment, Š.; Casari, C. S.; Naldoni, A. Spaced Hybrid TiO2/Au Nanotube Arrays with Tailored Optical Properties for Surface-Enhanced Raman Scattering. ACS omega 2024, 9, 48205–48212. doi:10.1021/acsomega.4c05485
- Aham, E. C.; Ravikumar, A.; Okoye, C. O.; Ezeorba, T. P. C.; Arunjegan, A.; Tamilselvan, G.; Okagu, I. U.; Zhang, H.; Zhang, Z. A comprehensive review of paper-based analytical devices for 17β-estradiol detection: Current status and future perspectives. Microchemical Journal 2024, 206, 111486. doi:10.1016/j.microc.2024.111486
- Sharma, N.; Mehta, Y.; Khurana, P.; Singh, A.; Thatai, S. Surface-Enhanced Raman Scattering Spectroscopy: An Effective Tool for the Detection of Environmental Pollutants. Plasmonics 2024. doi:10.1007/s11468-024-02438-7
- Huang, C.; Li, H.; Zhang, X. Direct Writing of SERS Substrates Using Femtosecond Laser Pulses. ACS omega 2024, 9, 37188–37196. doi:10.1021/acsomega.4c04588
- Liang, J.; Wang, S.; Yang, G.; Liang, X.; Zhang, D.; Zhang, C.; Bai, Y.; Lei, D. 3D Surface-Enhanced Raman Scattering Substrate Based on an Array of Self-Assembled Au@SiO2 Microspheres. ECS Journal of Solid State Science and Technology 2024, 13, 77013–077013. doi:10.1149/2162-8777/ad6589
- Seok, J. S.; Ju, H. Ultrahigh-Sensitivity Detection of 17β-Estradiol. Chemosensors 2024, 12, 61. doi:10.3390/chemosensors12040061
- Behyar, M. B.; Mirzaie, A.; Hasanzadeh, M.; Shadjou, N. Advancements in biosensing of hormones: Recent progress and future trends. TrAC Trends in Analytical Chemistry 2024, 173, 117600. doi:10.1016/j.trac.2024.117600
- Ma, Y.; Liu, X.; Yan, K.; Zhang, J. Construction of a Miniaturized Electrochemical Sensor for Voltammetric Detection of 17β-Estradiol Using a g-C3N4-Decorated Gold Nanoparticles Electrode. Current Analytical Chemistry 2024, 20, 183–190. doi:10.2174/0115734110292025240119112208
- Min, S.; Noh, D.; Oh, E. Electrochemical aptasensor utilizing pulsed-electrodeposition of MXene film for estradiol detection. Journal of the Korean Physical Society 2024, 84, 454–461. doi:10.1007/s40042-024-01006-w
- Hu, B.; Peng, L.; Liang, P.; Li, X.; Cai, M.; Liu, B.; Jia, Y.; Jing, Y.; Li, Z.; Sun, S. Advances in molecularly imprinted polymers-based electrochemical sensors for the detection of gonadal steroid hormones. TrAC Trends in Analytical Chemistry 2024, 171, 117485. doi:10.1016/j.trac.2023.117485
- Li, C.; He, X.; Li, H.; Xiao, Y.; Xu, X.; Jiang, C.; Wen, G.; Jiang, Z. A new COF@AuNC catalytic amplification-aptamer SERS quantitative analysis method for trace estradiol with nanoreaction of HAuCl4-sulfite. Microchemical Journal 2023, 191, 108920. doi:10.1016/j.microc.2023.108920
- Zhang, M.; Wu, Z.; Yang, Y.; Ye, J.; Han, S.; Li, Y. Fabrication of molecularly-imprinted gold nanoparticle-embedded Fe-MOFs for highly selective SERS detection of 17β-estradiol in milk. The Analyst 2023, 148, 2472–2481. doi:10.1039/d3an00343d
- Sui, J.; Liu, D.; Wang, C.; Wang, L.; Zhong, B.; Ma, Y. MAX phase-derived woolen ball-like K2Ti8O17 with excellent surface-enhanced Raman scattering property. Ceramics International 2023, 49, 15145–15153. doi:10.1016/j.ceramint.2023.01.097
- Zahraee, S. S.; Alvandi, N.; Ghamari, M.; Esfandiari, N. An ultra-sensitive nano biosensor for 17β-estradiol detection using carbon dots. Nano-Structures & Nano-Objects 2023, 34, 100951. doi:10.1016/j.nanoso.2023.100951
- Waifalkar, P. P.; Noh, D.; Derashri, P.; Barage, S.; Oh, E. Role of Estradiol Hormone in Human Life and Electrochemical Aptasensing of 17β-Estradiol: A Review. Biosensors 2022, 12, 1117. doi:10.3390/bios12121117
- Manivannan, B.; Nallathambi, G.; Devasena, T. Alternative methods of monitoring emerging contaminants in water: a review. Environmental science. Processes & impacts 2022, 24, 2009–2031. doi:10.1039/d2em00237j
- Jiang, G.; Li, Y.; Liu, J.; Liu, L.; Pi, F. Progress on aptamer-based SERS sensors for food safety and quality assessment: methodology, current applications and future trends. Critical reviews in food science and nutrition 2022, 64, 783–800. doi:10.1080/10408398.2022.2108370
- Chang, C.-C.; Li, C.-F.; Yang, Z.-H.; Lin, P.-Y.; Chang, H.-C.; Yang, C.-W. Target-induced recycling assembly of split aptamer fragments by DNA toehold-mediated displacement for the amplified colorimetric detection of estradiol. Sensors and Actuators B: Chemical 2022, 364, 131823. doi:10.1016/j.snb.2022.131823
- Brognara, A.; Bricchi, B. R.; William, L.; Brinza, O.; Konstantakopoulou, M.; Bassi, A. L.; Ghidelli, M.; Lidgi-Guigui, N. New Mechanism for Long Photo-Induced Enhanced Raman Spectroscopy in Au Nanoparticles Embedded in TiO2. Small (Weinheim an der Bergstrasse, Germany) 2022, 18, e2201088. doi:10.1002/smll.202201088
- Cheng, Z.; Ling, J.; Zhang, W.; Ding, Y. Rapid detection of 17β-estradiol based on shaddock peel derived fluorescent aptasensor for forensic examination. Forensic science international 2021, 331, 111153. doi:10.1016/j.forsciint.2021.111153