Thermophoretic tweezers for single nanoparticle manipulation

Jošt Stergar and Natan Osterman
Beilstein J. Nanotechnol. 2020, 11, 1126–1133. https://doi.org/10.3762/bjnano.11.97

Supporting Information

Supporting Information File 1: Real-time video of a trapped 200 nm polystyrene bead in water. Feedback frequency of 35 Hz. Field of view: 80 × 80 μm2.
Format: AVI Size: 15.2 MB Download
Supporting Information File 2: Real-time video of independent manipulation of two 200 nm polystyrene beads in water. Field of view: 80 × 80 μm2.
Format: AVI Size: 5.4 MB Download
Supporting Information File 3: Comparison of free diffusion and manipulated movement of 200 nm bead in water. Real-time video is reconstructed from the recorded particle trajectories. The red dot denotes the desired particle position; the green dot is the position of the heating laser focus, whereas the blue line represents the particle trajectory.
Format: MP4 Size: 1.2 MB Download

Cite the Following Article

Thermophoretic tweezers for single nanoparticle manipulation
Jošt Stergar and Natan Osterman
Beilstein J. Nanotechnol. 2020, 11, 1126–1133. https://doi.org/10.3762/bjnano.11.97

How to Cite

Stergar, J.; Osterman, N. Beilstein J. Nanotechnol. 2020, 11, 1126–1133. doi:10.3762/bjnano.11.97

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 382.2 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhang, M.; Luo, J.; Wang, X. Particle collection using a Lamb wave device with a non-piezoelectric glass substrate. Instrumentation Science & Technology 2024, 1–14. doi:10.1080/10739149.2024.2358051
  • Stergar, J.; Hren, R.; Milanič, M. Design and Validation of a Custom-Made Laboratory Hyperspectral Imaging System for Biomedical Applications Using a Broadband LED Light Source. Sensors (Basel, Switzerland) 2022, 22, 6274. doi:10.3390/s22166274
  • Hemayat, S.; Darbari, S. Far-field position-tunable trapping of dielectric particles using a graphene-based plasmonic lens. Optics express 2022, 30, 5512. doi:10.1364/oe.451740
  • Cheng, K.; Guo, J.; Fu, Y.; Guo, J. Active microparticle manipulation: Recent advances. Sensors and Actuators A: Physical 2021, 322, 112616. doi:10.1016/j.sna.2021.112616
  • Lu, X.; Liu, J.; Ye, D.; Yang, L.; Yang, Z.; Wang, Y. Simulation and fabrication of carbon nanotube–nanoparticle interconnected structures. Mechanical Sciences 2021, 12, 451–459. doi:10.5194/ms-12-451-2021
  • Chang, H.; Chiang, K. H.; Jun, Y.; Lai, P. Y.; Chen, Y.-F. Generation of virtual potentials by controlled feedback in electric circuit systems. Physical review. E 2021, 103, 042138. doi:10.1103/physreve.103.042138
Other Beilstein-Institut Open Science Activities