Cite the Following Article
Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms
Mykola Borzenkov, Piersandro Pallavicini, Angelo Taglietti, Laura D’Alfonso, Maddalena Collini and Giuseppe Chirico
Beilstein J. Nanotechnol. 2020, 11, 1134–1146.
https://doi.org/10.3762/bjnano.11.98
How to Cite
Borzenkov, M.; Pallavicini, P.; Taglietti, A.; D’Alfonso, L.; Collini, M.; Chirico, G. Beilstein J. Nanotechnol. 2020, 11, 1134–1146. doi:10.3762/bjnano.11.98
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 633.7 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Hyun, M.; Choi, C.; Kim, Y. Thermoresponsive polymer-hollow gold nanoparticle composites for effective photothermal sterilization as a potential wound dressing film. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2025, 704, 135520. doi:10.1016/j.colsurfa.2024.135520
- Javaid, A.; Abutwaibe, K.; Mudavath, S. L. Ultradeformable nanoparticles for active targeting of microbial infections: a photothermal approach. Nanophototherapy; Elsevier, 2025; pp 613–631. doi:10.1016/b978-0-443-13937-6.00017-2
- Mei, L.; Zhang, Y.; Wang, K.; Chen, S.; Song, T. Nanomaterials at the forefront of antimicrobial therapy by photodynamic and photothermal strategies. Materials today. Bio 2024, 29, 101354. doi:10.1016/j.mtbio.2024.101354
- Talaat, M. Biologically synthesized nanoparticles: barley-mediated silver and gold nanoparticles and caged gold nanoplatform for advanced drug delivery system engineering in medicine. Discover nano 2024, 19, 167. doi:10.1186/s11671-024-04097-3
- Karume, I.; Kigozi, M.; Nabatanzi, A.; Nsamba, H. K.; Adia, M. M.; Bbumba, S. Impact of synthetic method and metal type on the efficiency of metal-based nanoparticles against pathogens and chemical pollutants. Discover Chemistry 2024, 1. doi:10.1007/s44371-024-00020-y
- Wang, C.; Chen, Q.; Yin, R.; Yuan, X.; Kang, H.; Cai, A.; Zhang, Y.; Guo, H. Photothermal effect and antimicrobial properties of cerium-doped bioactive glasses. Ceramics International 2024, 50, 20235–20246. doi:10.1016/j.ceramint.2024.03.147
- Yuan, X.; Zhang, J.; Shi, J.; Liu, W.; Kritchenkov, A. S.; Van Vlierberghe, S.; Wang, L.; Liu, W.; Gao, J. Cotton Fabric-Reinforced Hydrogels with Excellent Mechanical and Broad-Spectrum Photothermal Antibacterial Properties. Polymers 2024, 16, 1346. doi:10.3390/polym16101346
- Divya, M.; Chen, J.; Durán-Lara, E. F.; Kim, K.-S.; Vijayakumar, S. Revolutionizing healthcare: Harnessing nano biotechnology with zinc oxide nanoparticles to combat biofilm and bacterial infections-A short review. Microbial pathogenesis 2024, 191, 106679. doi:10.1016/j.micpath.2024.106679
- Gulin-Sarfraz, T.; D'Alfonso, L.; Smått, J.-H.; Chirico, G.; Sarfraz, J. The antimicrobial and photothermal response of copper sulfide particles with distinct size and morphology. Nano-Structures & Nano-Objects 2024, 38, 101156. doi:10.1016/j.nanoso.2024.101156
- Omidiyan, M.; Srinoi, P.; Tajalli, P.; Lee, T. R. Review of Light-Activated Antimicrobial Nanoparticle–Polymer Composites for Biomedical Devices. ACS Applied Nano Materials 2024, 7, 8377–8391. doi:10.1021/acsanm.3c05173
- Almatroudi, A. Investigating Biofilms: Advanced Methods for Comprehending Microbial Behavior and Antibiotic Resistance. Frontiers in bioscience (Landmark edition) 2024, 29, 133. doi:10.31083/j.fbl2904133
- Lingamgunta, S.; Xiao, Y.; Choi, H.; Christie, G.; Fruk, L. Microwave-enhanced antibacterial activity of polydopamine-silver hybrid nanoparticles. RSC advances 2024, 14, 8331–8340. doi:10.1039/d3ra07543e
- Fadel, M.; El-Kholy, A. I. Gold nanoparticles in photodynamic and photothermal therapy. Gold Nanoparticles for Drug Delivery; Elsevier, 2024; pp 365–391. doi:10.1016/b978-0-443-19061-2.00018-3
- Rugmini, R.; Sekhar, K. C.; Sathish, S. Synthesis of silver nanoparticles for photothermal and sensing applications and sustainable gel formation. Materials Research Innovations 2023, 28, 278–287. doi:10.1080/14328917.2023.2275875
- Sharma, C.; Verma, M.; Abidi, S. M. S.; Shukla, A. K.; Acharya, A. Functional fluorescent nanomaterials for the detection, diagnosis and control of bacterial infection and biofilm formation: Insight towards mechanistic aspects and advanced applications. Colloids and surfaces. B, Biointerfaces 2023, 232, 113583. doi:10.1016/j.colsurfb.2023.113583
- Garg, P.; Priyadarshi, N.; Ambule, M. D.; Kaur, G.; Kaul, S.; Gupta, R.; Sagar, P.; Bajaj, G.; Yadav, B.; Rishi, V.; Goyal, B.; Srivastava, A. K.; Singhal, N. K. Multiepitope glycan based laser assisted fluorescent nanocomposite with dual functionality for sensing and ablation of Pseudomonas aeruginosa. Nanoscale 2023, 15, 15179–15195. doi:10.1039/d3nr02983b
- Kaur, S.; Dadwal, R.; Nandanwar, H.; Soni, S. Limits of antibacterial activity of triangular silver nanoplates and photothermal enhancement thereof for Bacillus subtilis. Journal of photochemistry and photobiology. B, Biology 2023, 247, 112787. doi:10.1016/j.jphotobiol.2023.112787
- Candra, A.; Darge, H. F.; Ahmed, Y. W.; Saragi, I. R.; Kitaw, S. L.; Tsai, H.-C. Eco-benign synthesis of nano‑gold chitosan-bacterial cellulose in spent ground coffee kombucha consortium: Characterization, microbiome community, and biological performance. International journal of biological macromolecules 2023, 253, 126869. doi:10.1016/j.ijbiomac.2023.126869
- Liu, H.; Xing, F.; Zhou, Y.; Yu, P.; Xu, J.; Luo, R.; Xiang, Z.; Maria Rommens, P.; Liu, M.; Ritz, U. Nanomaterials-based photothermal therapies for antibacterial applications. Materials & Design 2023, 233, 112231. doi:10.1016/j.matdes.2023.112231
- Jo, S.; Kim, S.; Lee, H.; Lee, S.; Lee, T. S. Improving cancer chemotherapy through photothermally triggered drug release from poly(N-isopropylacrylamide-co-acrylic acid)/Prussian blue hydrogel. Materials & Design 2023, 233, 112243. doi:10.1016/j.matdes.2023.112243