Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

Barbora Svitkova, Vlasta Zavisova, Veronika Nemethova, Martina Koneracka, Miroslava Kretova, Filip Razga, Monika Ursinyova and Alena Gabelova
Beilstein J. Nanotechnol. 2021, 12, 270–281. https://doi.org/10.3762/bjnano.12.22

Supporting Information

Supporting Information File 1: Expression of clathrin and caveolin, cytotoxicity of MNPs and endocytic inhibitors, time-lap imaging and fluorescent microscopy of A549 cells.
Format: PDF Size: 637.5 KB Download

Cite the Following Article

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization
Barbora Svitkova, Vlasta Zavisova, Veronika Nemethova, Martina Koneracka, Miroslava Kretova, Filip Razga, Monika Ursinyova and Alena Gabelova
Beilstein J. Nanotechnol. 2021, 12, 270–281. https://doi.org/10.3762/bjnano.12.22

How to Cite

Svitkova, B.; Zavisova, V.; Nemethova, V.; Koneracka, M.; Kretova, M.; Razga, F.; Ursinyova, M.; Gabelova, A. Beilstein J. Nanotechnol. 2021, 12, 270–281. doi:10.3762/bjnano.12.22

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 10.7 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhang, Z.; Zhang, Y.; Liu, Z.; Li, Y. Role of Different Dimensions of Skeleton Proteins in the Endocytosis of Various Shaped Nanoparticles. ACS Applied Nano Materials 2024, 7, 27185–27196. doi:10.1021/acsanm.4c05208
  • Garanina, A.; Vishnevskiy, D.; Chernysheva, A.; Malinovskaya, J.; Lazareva, P.; Semkina, A.; Abakumov, M.; Naumenko, V. The Internalization Pathways of Liposomes, PLGA, and Magnetic Nanoparticles in Neutrophils. Biomedicines 2024, 12, 2180. doi:10.3390/biomedicines12102180
  • Gevart, T.; Freis, B.; Vangijzegem, T.; Ramirez, M. L. A.; Stanicki, D.; Begin, S.; Laurent, S. Design of Iron Oxide Nanoparticles as Theranostic Nanoplatforms for Cancer Treatment. Topics in Applied Physics; Springer International Publishing, 2024; pp 175–215. doi:10.1007/978-3-031-58376-6_13
  • Petcov, T. E.; Straticiuc, M.; Iancu, D.; Mirea, D. A.; Trușcă, R.; Mereuță, P. E.; Savu, D. I.; Mogoșanu, G. D.; Mogoantă, L.; Popescu, R. C.; Kopatz, V.; Jinga, S. I. Unveiling Nanoparticles: Recent Approaches in Studying the Internalization Pattern of Iron Oxide Nanoparticles in Mono- and Multicellular Biological Structures. Journal of functional biomaterials 2024, 15, 169. doi:10.3390/jfb15060169
  • Ciont, C.; Mesaroș, A.; Pop, O. L.; Vodnar, D. C. Iron oxide nanoparticles carried by probiotics for iron absorption: a systematic review. Journal of nanobiotechnology 2023, 21, 124. doi:10.1186/s12951-023-01880-9
  • Portilla, Y.; Fernández-Afonso, Y.; Pérez-Yagüe, S.; Mulens-Arias, V.; Morales, M. P.; Gutiérrez, L.; Barber, D. F. Different coatings on magnetic nanoparticles dictate their degradation kinetics in vivo for 15 months after intravenous administration in mice. Journal of nanobiotechnology 2022, 20, 543. doi:10.1186/s12951-022-01747-5
  • Svitkova, B.; Selc, M.; Nemethova, V.; Razga, F.; Gabelova, A.; Ursinyova, M.; Babelova, A. Plate reader spectroscopy as an alternative to atomic absorption spectroscopy for the assessment of nanoparticle cellular uptake. Heliyon 2022, 8, e11595. doi:10.1016/j.heliyon.2022.e11595
  • Leal, A. F.; Cifuentes, J.; Torres, C. E.; Suárez, D.; Quezada, V.; Gómez, S. C.; Cruz, J. C.; Reyes, L. H.; Espejo-Mojica, A. J.; Alméciga-Díaz, C. J. Delivery and assessment of a CRISPR/nCas9-based genome editing system on in vitro models of mucopolysaccharidoses IVA assisted by magnetite-based nanoparticles. Scientific reports 2022, 12, 15045. doi:10.1038/s41598-022-19407-x
  • Bonet-Aleta, J.; Encinas-Gimenez, M.; Urriolabeitia, E.; Martin-Duque, P.; Hueso, J. L.; Santamaria, J. Unveiling the interplay between homogeneous and heterogeneous catalytic mechanisms in copper-iron nanoparticles working under chemically relevant tumour conditions. Chemical science 2022, 13, 8307–8320. doi:10.1039/d2sc01379g
  • Alves Feitosa, K.; de Oliveira Correia, R.; Maragno Fattori, A. C.; Albuquerque, Y. R.; Brassolatti, P.; Flores Luna, G.; de Almeida Rodolpho, J. M.; T Nogueira, C.; Cancino Bernardi, J.; Speglich, C.; de Freitas Anibal, F. Toxicological effects of the mixed iron oxide nanoparticle (Fe3O4 NP) on murine fibroblasts LA-9. Journal of toxicology and environmental health. Part A 2022, 85, 649–670. doi:10.1080/15287394.2022.2068711
  • Portilla, Y.; Mulens-Arias, V.; Paradela, A.; Ramos-Fernández, A.; Pérez-Yagüe, S.; Morales, M. P.; Barber, D. F. The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type. Biomaterials 2022, 281, 121365. doi:10.1016/j.biomaterials.2022.121365
  • Mostashari, S. Z.; Shojaei, A. F.; Tabatabaeian, K.; Kefayati, H.; Shariati, S. Synthesis and characterization of Fe3O4@SiO2-(CH2)3-NH-Asn-M(II) (Cu (II)/ Ni(II)/ Co(II)) and its catalytic application in the synthesis of chromeno-pyrazolo-phthalazine derivatives. Research on Chemical Intermediates 2021, 48, 669–682. doi:10.1007/s11164-021-04615-3
Other Beilstein-Institut Open Science Activities