Supporting Information
This file shows how the average platinum crystallite size DAv is calculated based on the X-ray diffraction pattern, how the electrochemically active surface area is obtained, how the catalytic activity is determined in the ORR, and the degradation degree of the electrocatalysts.
Supporting Information File 1: Experimental and theoretical methods used to obtain catalyst parameters. | ||
Format: PDF | Size: 573.3 KB | Download |
Cite the Following Article
Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: is size or uniformity of primary importance?
Kirill O. Paperzh, Anastasia A. Alekseenko, Vadim A. Volochaev, Ilya V. Pankov, Olga A. Safronenko and Vladimir E. Guterman
Beilstein J. Nanotechnol. 2021, 12, 593–606.
https://doi.org/10.3762/bjnano.12.49
How to Cite
Paperzh, K. O.; Alekseenko, A. A.; Volochaev, V. A.; Pankov, I. V.; Safronenko, O. A.; Guterman, V. E. Beilstein J. Nanotechnol. 2021, 12, 593–606. doi:10.3762/bjnano.12.49
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 9.6 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Mal'tanova, A.; Bel'ko, N.; Nichick, M.; Malakhovsky, P.; Konakov, A.; Voitekhovich, S.; Gaevskaya, T.; Baatar, B.; Samtsov, M.; Liu, S.; Poznyak, S. Tetrazole-stabilized Ag nanoparticles incorporated into TiO2 nanotubes for oxygen electroreduction. New Journal of Chemistry 2024, 48, 19315–19324. doi:10.1039/d4nj04374j
- Guterman, V.; Alekseenko, A.; Belenov, S.; Menshikov, V.; Moguchikh, E.; Novomlinskaya, I.; Paperzh, K.; Pankov, I. Exploring the Potential of Bimetallic PtPd/C Cathode Catalysts to Enhance the Performance of PEM Fuel Cells. Nanomaterials (Basel, Switzerland) 2024, 14, 1672. doi:10.3390/nano14201672
- Guterman, V.; Paperzh, K.; Novomlinskaya, I.; Kantsypa, I.; Khudoley, A.; Astravukh, Y.; Pankov, I.; Nikulin, A. Advances in Liquid-Phase Synthesis: Monitoring of Kinetics for Platinum Nanoparticles Formation, and Pt/C Electrocatalysts with Monodispersive Nanoparticles for Oxygen Reduction. Catalysts 2024, 14, 728. doi:10.3390/catal14100728
- Paperzh, K.; Bayan, Y.; Gerasimov, E.; Pankov, I.; Konstantinov, A.; Menshchikov, V.; Mauer, D.; Beskopylny, Y.; Alekseenko, A. High-performance electrocatalyst for PEMFC cathode: Combination of ultra-small platinum nanoparticles and N-doped carbon support. Carbon Trends 2024, 16, 100383. doi:10.1016/j.cartre.2024.100383
- Chernysheva, D. V.; Klushin, V. A.; Alekseenko, A. A.; Moguchikh, E. A.; Kolesnikov, E. A.; Gorshenkov, M. V.; Kaichev, V. V.; Fesenko, L. N.; Smirnova, N. V. Pt/C electrocatalysts based on N-doped carbon materials from waste plant biomass. Mendeleev Communications 2024, 34, 725–728. doi:10.1016/j.mencom.2024.09.032
- Bayan, Y.; Paperzh, K.; Danilenko, M.; Alekseenko, D.; Pankova, Y.; Pankov, I.; Alekseenko, A. Control Over Morphological Characteristics of the Pt/C Catalysts Obtained by the Liquid-Phase Synthesis. Springer Proceedings in Materials; Springer Nature Switzerland, 2024; pp 3–15. doi:10.1007/978-3-031-52239-0_1
- Alekseenko, A.; Belenov, S.; Mauer, D.; Moguchikh, E.; Falina, I.; Bayan, J.; Pankov, I.; Alekseenko, D.; Guterman, V. Activity of Platinum-Based Cathode Electrocatalysts in Oxygen Redaction for Proton-Exchange Membrane Fuel Cells: Influence of the Ionomer Content. Inorganics 2024, 12, 23. doi:10.3390/inorganics12010023
- Wallnöfer-Ogris, E.; Poimer, F.; Köll, R.; Macherhammer, M.-G.; Trattner, A. Main degradation mechanisms of polymer electrolyte membrane fuel cell stacks – Mechanisms, influencing factors, consequences, and mitigation strategies. International Journal of Hydrogen Energy 2024, 50, 1159–1182. doi:10.1016/j.ijhydene.2023.06.215
- Moguchikh, E. A.; Alekseenko, A. A.; Pankov, I. V.; Alekseenko, D. V.; Guterman, V. E. Changes in the Microstructure and Electrochemical Behavior of Pt/C Electrocatalysts under Various Stress Testing Conditions. Nanobiotechnology Reports 2023, 18, S301–S315. doi:10.1134/s2635167624600081
- Akhmedov, M. A.; Khidirov, S. S.; Suleimanov, S. I. Electrochemical Behavior of Dimethyl Sulfone on Platinum Electrode. Russian Journal of Electrochemistry 2023, 59, 856–866. doi:10.1134/s1023193523110034
- Hernandez, J. B.; Epright, Z. D.; Terrero Rodríguez, I. M.; O'Neil, G. D. Electrodeposition Parameters Dramatically Influence the Morphology, Stability, and Performance of n‐Si/Pt Light‐Addressable Electrochemical Sensors. ChemElectroChem 2023, 10. doi:10.1002/celc.202300400
- Alekseenko, A.; Pavlets, A.; Mikheykin, A.; Belenov, S.; Guterman, E. The integrated approach to studying the microstructure of de-alloyed PtCu/C electrocatalysts for PEMFCs. Applied Surface Science 2023, 631, 157539. doi:10.1016/j.apsusc.2023.157539
- Paperzh, K. O.; Pavlets, A. S.; Alekseenko, A. A.; Pankov, I. V.; Guterman, V. E. The integrated study of the morphology and the electrochemical behavior of Pt-based ORR electrocatalysts during the stress testing. International Journal of Hydrogen Energy 2023, 48, 22401–22414. doi:10.1016/j.ijhydene.2023.01.079
- Paperzh, K.; Moguchikh, E.; Pankov, I.; Belenov, S.; Alekseenko, A. Effect of AST Atmosphere on Pt/C Electrocatalyst Degradation. Inorganics 2023, 11, 237. doi:10.3390/inorganics11060237
- Moguchikh, E.; Paperzh, K.; Pankov, I.; Belenov, S.; Alekseenko, A. Durability of Commercial Catalysts within Relevant Stress Testing Protocols. Catalysts 2023, 13, 923. doi:10.3390/catal13060923
- Danilenko, M. V.; Guterman, V. E.; Novomlinskiy, I. N.; Pankov, I. V. The effect of a gas atmosphere on the formation of colloidal platinum nanoparticles in liquid phase synthesis. Colloid and Polymer Science 2023, 301, 433–443. doi:10.1007/s00396-023-05077-2
- Pavlets, A. S.; Moguchikh, E. A.; Paperzh, K. O.; Gribov, E. N.; Alekseenko, A. A. Platinum-Containing Nanoparticles on a Nitrogen-Doped Carbon Support as Highly Active Electrocatalysts for Low-Temperature Fuel Cells. Inorganic Materials: Applied Research 2023, 14, 189–196. doi:10.1134/s2075113323010288
- Menshikov, V.; Paperzh, K.; Bayan, Y.; Beskopylny, Y.; Nikulin, A.; Pankov, I.; Belenov, S. The Development of High-Performance Platinum-Ruthenium Catalysts for the Methanol Oxidation Reaction: Gram-Scale Synthesis, Composition, Morphology, and Functional Characteristics. Catalysts 2022, 12, 1257. doi:10.3390/catal12101257
- Madakannu, I.; Patil, I.; Kakade, B.; Datta, K. K. R. Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media. Beilstein journal of nanotechnology 2022, 13, 1020–1029. doi:10.3762/bjnano.13.89
- Danilenko, M. V.; Guterman, V. E.; Paperzh, K. O.; Alekseenko, A. A.; Pankov, I. V. CO Effect on the Dynamics of Platinum Nucleation/Growth Under the Liquid-Phase Synthesis of Pt/C Electrocatalysts. Journal of The Electrochemical Society 2022, 169, 92501–092501. doi:10.1149/1945-7111/ac8c02