Nanogenerator-based self-powered sensors for data collection

Yicheng Shao, Maoliang Shen, Yuankai Zhou, Xin Cui, Lijie Li and Yan Zhang
Beilstein J. Nanotechnol. 2021, 12, 680–693. https://doi.org/10.3762/bjnano.12.54

Cite the Following Article

Nanogenerator-based self-powered sensors for data collection
Yicheng Shao, Maoliang Shen, Yuankai Zhou, Xin Cui, Lijie Li and Yan Zhang
Beilstein J. Nanotechnol. 2021, 12, 680–693. https://doi.org/10.3762/bjnano.12.54

How to Cite

Shao, Y.; Shen, M.; Zhou, Y.; Cui, X.; Li, L.; Zhang, Y. Beilstein J. Nanotechnol. 2021, 12, 680–693. doi:10.3762/bjnano.12.54

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 8.4 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mehamud, I.; Björling, M.; Marklund, P.; An, R.; Shi, Y. Enhanced Machine Condition Monitoring Based on Triboelectric Nanogenerator (TENG): A Review of Recent Advancements. Advanced Sustainable Systems 2024. doi:10.1002/adsu.202400575
  • Chen, C.; Tu, Q.; Zhou, X.; Xu, J.; Lv, C.; Ke, X.; Li, H.; Chen, L.; Liu, X. Flexible, Stable and Self-Powered Two-Dimensional Layered Nanocomposites (PANI@MoS2) for Trace Ammonia Gas Detection. Springer Science and Business Media LLC 2024. doi:10.21203/rs.3.rs-4390151/v1
  • Leburu, E.; Qiao, Y.; Wang, Y.; Yang, J.; Liang, S.; Yu, W.; Yuan, S.; Duan, H.; Huang, L.; Hu, J.; Hou, H. Flexible electronics for heavy metal ion detection in water: a comprehensive review. Biomedical microdevices 2024, 26, 30. doi:10.1007/s10544-024-00710-5
  • Arya, S.; Sharma, A.; Singh, A.; Ahmed, A.; Dubey, A.; Padha, B.; Khan, S.; Mahadeva, R.; Khosla, A.; Gupta, V. Review—Energy and Power Requirements for Wearable Sensors. ECS Sensors Plus 2024, 3, 22601–022601. doi:10.1149/2754-2726/ad54d2
  • Fan, Y.; Zhang, L.; Li, D.; Wang, Z. Progress in self-powered, multi-parameter, micro sensor technologies for power metaverse and smart grids. Nano Energy 2023, 118, 108959. doi:10.1016/j.nanoen.2023.108959
  • Lin, Y.; Yang, R.; Wu, X. Recent progress in the development of conductive hydrogels and the application in 3D printed wearable sensors. RSC Applied Polymers 2023, 1, 132–157. doi:10.1039/d3lp00077j
  • Xi, Y.; Fan, Y.; Li, Z.; Liu, Z. Materials, Structures, and Applications of iTENGs. Coatings 2023, 13, 1407. doi:10.3390/coatings13081407
  • Xi, Y.; Tan, P.; Li, Z.; Fan, Y. Self-powered wearable IoT sensors as human-machine interfaces. Soft Science 2023, 3. doi:10.20517/ss.2023.13
  • Ge, X.; Hu, N.; Yan, F.; Wang, Y. Development and applications of electrospun nanofiber-based triboelectric nanogenerators. Nano Energy 2023, 112, 108444. doi:10.1016/j.nanoen.2023.108444
  • Zou, Y.; Wang, J.; Hu, Z.; Sun, M.; Liu, J.; Du, T.; Sun, P.; Xu, M. Advances in Triboelectric Flow Sensor. Advanced Materials Technologies 2023, 8. doi:10.1002/admt.202300316
  • Fan, C.; Wang, Z.; Lin, B.; Yang, A.; Yuan, H.; Chu, J.; Wang, X.; Rong, M.; Lv, P. A Noval Electromagnetic Generator with Spring Amplification Structure for Vibration Energy Harvesting of Power Equipment. In 2023 IEEE 6th International Electrical and Energy Conference (CIEEC), IEEE, 2023; pp 2739–2744. doi:10.1109/cieec58067.2023.10166424
  • Fan, J.-C.; Tang, X.-G.; Sun, Q.-J.; Jiang, Y.-P.; Li, W.-H.; Liu, Q.-X. Low-cost composite film triboelectric nanogenerators for a self-powered touch sensor. Nanoscale 2023, 15, 6263–6272. doi:10.1039/d2nr05962b
  • Tladi, B. C.; Kroon, R. E.; Swart, H. C.; Motaung, D. E. A holistic review on the recent trends, advances, and challenges for high-precision room temperature liquefied petroleum gas sensors. Analytica chimica acta 2023, 1253, 341033. doi:10.1016/j.aca.2023.341033
  • Loddenkemper, T. Detect, predict, and prevent acute seizures and status epilepticus. Epilepsy & behavior : E&B 2023, 141, 109141. doi:10.1016/j.yebeh.2023.109141
  • Che, Z.; O'Donovan, S.; Xiao, X.; Wan, X.; Chen, G.; Zhao, X.; Zhou, Y.; Yin, J.; Chen, J. Implantable Triboelectric Nanogenerators for Self-Powered Cardiovascular Healthcare. Small (Weinheim an der Bergstrasse, Germany) 2023, 19, e2207600. doi:10.1002/smll.202207600
  • Liu, Y.; Liu, D.; Gao, C.; Zhang, X.; Yu, R.; Wang, X.; Li, E.; Hu, Y.; Guo, T.; Chen, H. Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing. Nature communications 2022, 13, 7917. doi:10.1038/s41467-022-35628-0
  • Wang, X.; Hu, Y.; Li, J.; Ma, J.; Wan, N.; Wen, J.; Cheng, T. A double-float structured triboelectric nanogenerator for wave hydrological monitoring. Sustainable Energy Technologies and Assessments 2022, 54, 102824. doi:10.1016/j.seta.2022.102824
  • Radhakrishnan, S.; Joseph, S.; Jelmy, E.; Saji, K.; Sanathanakrishnan, T.; John, H. Triboelectric nanogenerators for marine energy harvesting and sensing applications. Results in Engineering 2022, 15, 100487. doi:10.1016/j.rineng.2022.100487
  • Dong, X.; Wang, Z.; Berbille, A.; Zhao, X.; Tang, W.; Wang, Z. L. Investigations on the contact-electro-catalysis under various ultrasonic conditions and using different electrification particles. Nano Energy 2022, 99, 107346. doi:10.1016/j.nanoen.2022.107346
  • Wang, W.; Xiao, H.; Zhang, L.; Wang, Y.; Yuan, Q.; Tan, J. Mechanical energy-induced charge separation in intelligent sensing. Cell Reports Physical Science 2022, 3, 100952. doi:10.1016/j.xcrp.2022.100952
Other Beilstein-Institut Open Science Activities