Recent progress in actuation technologies of micro/nanorobots

Ke Xu and Bing Liu
Beilstein J. Nanotechnol. 2021, 12, 756–765. https://doi.org/10.3762/bjnano.12.59

Cite the Following Article

Recent progress in actuation technologies of micro/nanorobots
Ke Xu and Bing Liu
Beilstein J. Nanotechnol. 2021, 12, 756–765. https://doi.org/10.3762/bjnano.12.59

How to Cite

Xu, K.; Liu, B. Beilstein J. Nanotechnol. 2021, 12, 756–765. doi:10.3762/bjnano.12.59

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 10.9 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Murali, N.; Das, S. B.; Yadav, S.; Rainu, S. K.; Singh, N.; Betal, S. Advanced Biomimetic and Biohybrid Magnetic Micro/Nano‐Machines. Advanced Materials Technologies 2024. doi:10.1002/admt.202400239
  • Benhal, P. Micro/Nanorobotics in In Vitro Fertilization: A Paradigm Shift in Assisted Reproductive Technologies. Micromachines 2024, 15, 510. doi:10.3390/mi15040510
  • Dang, D.; Xu, K. Physical Sensor for Electronic Skin Based on Nanomaterials: A Review. Integrated Ferroelectrics 2024, 240, 544–572. doi:10.1080/10584587.2024.2324683
  • Atheena, M. P. S.; Rashika, M.; Krithina, P. D.; Kriya, S. M. The occupational directness of nanorobots in medical surgeries. i-manager's Journal on Mechanical Engineering 2024, 14, 41. doi:10.26634/jme.14.2.21085
  • Singh, M. P.; Rathod, P. B.; Kalel, R. A. Toxic gas detection by nanotechnology-based sensors. Nanotechnology-based Sensors for Detection of Environmental Pollution; Elsevier, 2024; pp 277–316. doi:10.1016/b978-0-443-14118-8.00015-2
  • Kuzin, A.; Chen, G.; Zhu, F.; Gorin, D.; Mohan, B.; Choudhury, U.; Cui, J.; Modi, K.; Huang, G.; Mei, Y.; Solovev, A. A. Bridging the gap: harnessing liquid nanomachine know-how for tackling harmful airborne particulates. Nanoscale 2023, 15, 17727–17738. doi:10.1039/d3nr03808d
  • Ye, Q.; Sun, J. Nanorobots for Drug Delivery, Surgery, and Biosensing. Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine; Springer International Publishing, 2022; pp 15–34. doi:10.1007/978-3-031-16084-4_2
  • Konara, M.; Mudugamuwa, A.; Dodampegama, S.; Roshan, U.; Amarasinghe, R.; Dao, D. V. Formation Techniques Used in Shape-Forming Microrobotic Systems with Multiple Microrobots: A Review. Micromachines 2022, 13, 1987. doi:10.3390/mi13111987
  • Chesnitskiy, A. V.; Gayduk, A. E.; Seleznev, V. A.; Prinz, V. Y. Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field. Materials (Basel, Switzerland) 2022, 15, 7781. doi:10.3390/ma15217781
  • Yang, M.; Guo, X.; Mou, F.; Guan, J. Lighting up Micro-/Nanorobots with Fluorescence. Chemical reviews 2022, 123, 3944–3975. doi:10.1021/acs.chemrev.2c00062
  • Lun, D.; Xu, K. Recent Progress in Gas Sensor Based on Nanomaterials. Micromachines 2022, 13, 919. doi:10.3390/mi13060919
  • Urso, M.; Pumera, M. Micro‐ and Nanorobots Meet DNA. Advanced Functional Materials 2022, 32. doi:10.1002/adfm.202200711
  • Urso, M.; Pumera, M. Nano/Microplastics Capture and Degradation by Autonomous Nano/Microrobots: A Perspective. Advanced Functional Materials 2022, 32. doi:10.1002/adfm.202112120
Other Beilstein-Institut Open Science Activities