The role of convolutional neural networks in scanning probe microscopy: a review

Ido Azuri, Irit Rosenhek-Goldian, Neta Regev-Rudzki, Georg Fantner and Sidney R. Cohen
Beilstein J. Nanotechnol. 2021, 12, 878–901. https://doi.org/10.3762/bjnano.12.66

Cite the Following Article

The role of convolutional neural networks in scanning probe microscopy: a review
Ido Azuri, Irit Rosenhek-Goldian, Neta Regev-Rudzki, Georg Fantner and Sidney R. Cohen
Beilstein J. Nanotechnol. 2021, 12, 878–901. https://doi.org/10.3762/bjnano.12.66

How to Cite

Azuri, I.; Rosenhek-Goldian, I.; Regev-Rudzki, N.; Fantner, G.; Cohen, S. R. Beilstein J. Nanotechnol. 2021, 12, 878–901. doi:10.3762/bjnano.12.66

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 11.5 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Pregowska, A.; Roszkiewicz, A.; Osial, M.; Giersig, M. How scanning probe microscopy can be supported by artificial intelligence and quantum computing?. Microscopy research and technique 2024, 87, 2515–2539. doi:10.1002/jemt.24629
  • She, D. T.; Nai, M. H.; Lim, C. T. Atomic force microscopy in the characterization and clinical evaluation of neurological disorders: current and emerging technologies. Med-X 2024, 2. doi:10.1007/s44258-024-00022-6
  • Sokolov, I. On machine learning analysis of atomic force microscopy images for image classification, sample surface recognition. Physical chemistry chemical physics : PCCP 2024, 26, 11263–11270. doi:10.1039/d3cp05673b
  • Smalley, D.; Lough, S. D.; Holtzman, L.; Xu, K.; Holbrook, M.; Rosenberger, M. R.; Hone, J. C.; Barmak, K.; Ishigami, M. Detecting atomic-scale surface defects in STM of TMDs with ensemble deep learning. MRS Advances 2024, 9, 890–896. doi:10.1557/s43580-024-00837-w
  • Rosenhek-Goldian, I.; Cohen, S. R. Some considerations in nanoindentation measurement and analysis by atomic force microscopy. Journal of Vacuum Science & Technology A 2023, 41. doi:10.1116/6.0003136
  • Petrov, M.; Sokolov, I. Machine Learning Allows for Distinguishing Precancerous and Cancerous Human Epithelial Cervical Cells Using High-Resolution AFM Imaging of Adhesion Maps. Cells 2023, 12, 2536. doi:10.3390/cells12212536
  • Wu, H.; Zhang, L.; Zhao, B.; Yang, W.; Galluzzi, M. Deep learning strategy for small dataset from atomic force microscopy mechano-imaging on macrophages phenotypes. Frontiers in bioengineering and biotechnology 2023, 11, 1259979. doi:10.3389/fbioe.2023.1259979
  • Groenendijk, R.; Dorst, L.; Gevers, T. Geometric Back-Propagation in Morphological Neural Networks. IEEE transactions on pattern analysis and machine intelligence 2023, 45, 14045–8. doi:10.1109/tpami.2023.3290615
  • Mazalan, M.; Do, T.-D.; Zaman, W. S. W. K.; Ramlan, E. I. Machine Learning Approaches for Stem Cells. Current Stem Cell Reports 2023, 9, 43–56. doi:10.1007/s40778-023-00228-1
  • Ragone, M.; Shahabazian-Yassar, R.; Mashayek, F.; Yurkiv, V. Deep learning modeling in microscopy imaging: A review of materials science applications. Progress in Materials Science 2023, 138, 101165. doi:10.1016/j.pmatsci.2023.101165
  • Martinez-Rivas, A.; Formosa-Dague, C.; Espinal, L. E. M.; -Chemin, O. T.-; Carillo, K.; Severac, C.; DAGUE, E. Nanobiomechanical data classified by Deep learning based on convolutional neural networks. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-3235928/v1
  • Hebbar, S. V.; Mahmmod, B. M.; Zolkifly, I. A.; Al-Nahari, A.; Abdulhussain, S. H. Deep Learning-Based Approach for Classifying the Severity of Metal Corrosion Using Sem Images. Lecture Notes on Data Engineering and Communications Technologies; Springer Nature Singapore, 2023; pp 403–418. doi:10.1007/978-981-99-0741-0_29
  • Weber, A.; Vivanco, M. d.; Toca-Herrera, J. L. Application of self-organizing maps to AFM-based viscoelastic characterization of breast cancer cell mechanics. Scientific reports 2023, 13, 3087. doi:10.1038/s41598-023-30156-3
  • Kocur, V.; Hegrová, V.; Patočka, M.; Neuman, J.; Herout, A. Correction of AFM data artifacts using a convolutional neural network trained with synthetically generated data. Ultramicroscopy 2022, 246, 113666. doi:10.1016/j.ultramic.2022.113666
  • Tang, B.; Song, Y.; Qin, M.; Tian, Y.; Wu, Z. W.; Jiang, Y.; Cao, D.; Xu, L. Machine learning-aided atomic structure identification of interfacial ionic hydrates from AFM images. National science review 2022, 10, nwac282. doi:10.1093/nsr/nwac282
  • Weber, A.; Vivanco, M. d.; Toca-Herrera, J. L. Application of self-organizing maps to AFM-based viscoelastic characterization of breast cancer cell mechanics. Cold Spring Harbor Laboratory 2022. doi:10.1101/2022.12.03.518961
  • Ranawat, Y. S.; Jaques, Y. M.; Foster, A. S. Generalised deep-learning workflow for the prediction of hydration layers over surfaces. Journal of Molecular Liquids 2022, 367, 120571. doi:10.1016/j.molliq.2022.120571
  • Breshears, M. D.; Giridharagopal, R.; Pothoof, J.; Ginger, D. S. A Robust Neural Network for Extracting Dynamics from Electrostatic Force Microscopy Data. Journal of chemical information and modeling 2022, 62, 4342–4350. doi:10.1021/acs.jcim.2c00738
  • Ziatdinov, M.; Liu, Y.; Kelley, K.; Vasudevan, R.; Kalinin, S. V. Bayesian Active Learning for Scanning Probe Microscopy: From Gaussian Processes to Hypothesis Learning. ACS nano 2022, 16, 13492–13512. doi:10.1021/acsnano.2c05303
  • Yablon, D.; Chakraborty, I.; Passino, H.; Iyer, K.; Doufas, A.; Shivokhin, M.; Thornton, J.; Pittenger, B. Deep Learning to Predict Structure-Property Relationships of Polymer Blends. ACS Symposium Series; American Chemical Society, 2022; pp 51–64. doi:10.1021/bk-2022-1416.ch003
Other Beilstein-Institut Open Science Activities