A review on slip boundary conditions at the nanoscale: recent development and applications

Ruifei Wang, Jin Chai, Bobo Luo, Xiong Liu, Jianting Zhang, Min Wu, Mingdan Wei and Zhuanyue Ma
Beilstein J. Nanotechnol. 2021, 12, 1237–1251. https://doi.org/10.3762/bjnano.12.91

Cite the Following Article

A review on slip boundary conditions at the nanoscale: recent development and applications
Ruifei Wang, Jin Chai, Bobo Luo, Xiong Liu, Jianting Zhang, Min Wu, Mingdan Wei and Zhuanyue Ma
Beilstein J. Nanotechnol. 2021, 12, 1237–1251. https://doi.org/10.3762/bjnano.12.91

How to Cite

Wang, R.; Chai, J.; Luo, B.; Liu, X.; Zhang, J.; Wu, M.; Wei, M.; Ma, Z. Beilstein J. Nanotechnol. 2021, 12, 1237–1251. doi:10.3762/bjnano.12.91

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 10.7 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Çam, M.; Goedde, C. G.; Lichter, S. Slip due to kink propagation at the liquid–solid interface. Journal of Fluid Mechanics 2024, 1000. doi:10.1017/jfm.2024.1013
  • Sengupta, S.; Chakraborty, S. Can boundary slip destabilize rotating microchannel flows?. Physics of Fluids 2024, 36. doi:10.1063/5.0231804
  • Tsao, Y.-H.; Liao, Y.-C.; Tsao, H.-K. Capillary flow in nanoslits: Transition from deviation to conformance with the Lucas–Washburn equation. Physics of Fluids 2024, 36. doi:10.1063/5.0226201
  • Bakar, S. A.; Pop, I.; Md Arifin, N. Unsteady flow of gyrotactic microorganisms with hybrid nanofluid and higher order slips using modified Buongiorno model. International Journal of Heat and Fluid Flow 2024, 107, 109378. doi:10.1016/j.ijheatfluidflow.2024.109378
  • Lim, S.; Hatakeyama, I.; Nakamoto, M.; Yoshikawa, T.; Tanaka, T. Effect of Wettability on Droplet Agglomeration in Two Immiscible Liquids. ISIJ International 2024, 64, 1334–1337. doi:10.2355/isijinternational.isijint-2024-017
  • Abu Bakar, S.; Pop, I.; Md Arifin, N. Unsteady flow of hybrid nanofluid over a permeable shrinking inclined rotating disk with radiation and velocity slip effects. Neural Computing and Applications 2024, 36, 11525–11544. doi:10.1007/s00521-024-09792-x
  • Li, Y.; Zhang, Z.; Ji, Y.; Wang, L.; Li, D. Influence of surface roughness on the fluid flow in microchannel. Journal of Physics: Conference Series 2024, 2740, 12059–012059. doi:10.1088/1742-6596/2740/1/012059
  • Bhandari, A.; Parmar, K. Exploring slip effects of ferrofluid film flow over a slanted rough surface. Journal of Fluid Mechanics 2024, 982. doi:10.1017/jfm.2024.118
  • Garg, A. Enhanced flow in deformable carbon nanotubes. Journal of Applied Physics 2024, 135. doi:10.1063/5.0188089
  • Yasmin, H.; Lone, S. A.; Mahnashi, A. M.; Hamali, W.; Raizah, Z.; Saeed, A. The electrically conducting water-based nanofluid flow containing titanium and aluminum alloys over a rotating disk surface with nonlinear thermal radiation: A numerical analysis. Open Physics 2024, 22. doi:10.1515/phys-2023-0184
  • Qin, X.; Wang, H.; Xia, Y.; He, W.; Xia, X.; Cai, J. Three-dimensional modeling of nanoconfined multiphase flow in clay nanopores using FIB-SEM images of shale. The Innovation Energy 2024, 1, 100050–10. doi:10.59717/j.xinn-energy.2024.100050
  • Mohammadi, A.; Roostaei, M. Diode-like response of conical-shaped nanochannels to external stimuli: The importance of slip length. International Communications in Heat and Mass Transfer 2024, 150, 107176. doi:10.1016/j.icheatmasstransfer.2023.107176
  • Fatima, A.; Sagheer, M.; Hussain, S. A study of inclined magnetically driven Casson nanofluid using the Cattaneo-Christov heat flux model with multiple slips towards a chemically reacting radially stretching sheet. Journal of Central South University 2023, 30, 3721–3736. doi:10.1007/s11771-023-5485-3
  • Kouser, T.; Zulfiqar, H.; Misbah, M.; Alhems, L. M. Passive Drag Reduction Technologies. ChemBioEng Reviews 2023, 10, 1110–1122. doi:10.1002/cben.202300044
  • Tajparast, M.; Glavinović, M. I. Water flow in a cylindrical nanopore with an object. Physics of Fluids 2023, 35. doi:10.1063/5.0168777
  • Tseng, J.; Su, J.; Chang, K.; Chang, A.; Chuang, L.; Lu, A.; Lee, R.; Lee, E. Electrophoresis of a dielectric droplet with constant surface charge density. Electrophoresis 2023, 44, 1810–1817. doi:10.1002/elps.202300077
  • Wang, W.; Khayat, R. E.; de Bruyn, J. R. The viscoplastic circular hydraulic jump. Physics of Fluids 2023, 35. doi:10.1063/5.0155678
  • Sadhukhan, S.; Penič, S.; Iglič, A.; Gov, N. S. Modelling how curved active proteins and shear flow pattern cellular shape and motility. Frontiers in cell and developmental biology 2023, 11, 1193793. doi:10.3389/fcell.2023.1193793
  • Rahnama Falavarjani, A.; Salac, D. Modeling droplets with slippery interfaces. Journal of Computational Physics 2023, 481, 112033. doi:10.1016/j.jcp.2023.112033
  • TAKEUCHI, A. Fundamental characteristics of flat thrust bearing with partial placement of slip areas. Transactions of the JSME (in Japanese) 2023, 89, 22–258-22-00258. doi:10.1299/transjsme.22-00258
Other Beilstein-Institut Open Science Activities