Supporting Information
Optical microscopy image of our typical CVD graphene device, schematic illustration of the resulting ZIKV60-functionalized graphene devices and experimental setup used in the electrical characterization for ZIKV NS1 protein detection, flowchart outlining the execution of CE-SELEX for ZIKV NS1 protein aptamers selection, secondary structure of ZIKV60 aptamer, transfer curves of four distinct graphene devices prior and subsequent to functionalization with ZIKV60 aptamer, transfer curves of six individual graphene devices functionalized with ZIKV60 aptamer before and after sequential addition of ZIKV NS1 protein ranging from 0.01 to 1000 pg/mL, graphene resistances at VG = 0.2 V of seven different devices for the following ZIKV NS1 protein concentrations: 0.01, 0.1, 1, 10, 100, and 1000 pg/mL, percentage changes in graphene resistance at VG = 0.2 V for the following ZIKV NS1 protein concentrations: 0.01, 0.1, 1, 10, 100, and 1000 pg/mL.
Supporting Information File 1: Additional experimental data. | ||
Format: PDF | Size: 1.1 MB | Download |
Cite the Following Article
How to Cite
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 11.8 MB | Download |
Citations to This Article
Scholarly Works
- Sujith, S.; Naresh, R.; Srivisanth, B. U.; Sajeevan, A.; Rajaramon, S.; David, H.; Solomon, A. P. Aptamers: precision tools for diagnosing and treating infectious diseases. Frontiers in cellular and infection microbiology 2024, 14, 1402932. doi:10.3389/fcimb.2024.1402932
- Mariano, D. G.; Bastos, F. D.; de Oliveira Mota, H.; Costa, J. G.; Torres, V. Â. M. F.; de Sousa Lacerda, C. M.; Plentz, F. A Stimulation and Measurement System for the Characterization of Graphene FET Biosensors. In 2024 8th International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT), IEEE, 2024; pp 1–5. doi:10.1109/inscit62583.2024.10693379
- Sousa, T. A. S. L.; Almeida, N. B. F.; Santos, F. A.; Filgueiras, P. S.; Corsini, C. A.; Lacerda, C. M. S.; Silva, T. G.; Grenfell, R. F. Q.; Plentz, F. Ultrafast and highly sensitive detection of SARS-CoV-2 spike protein by field-effect transistor graphene-based biosensors. Nanotechnology 2024, 35, 425503. doi:10.1088/1361-6528/ad67e8
- Shamsusah, N. A.; Mohd Fadli, M. E. I.; Emrizal, R.; Hanifah, S. A.; Firdaus-Raih, M. Challenges in the Detection of Emerging Novel Pathogens and Evolving Known Pathogens. Field-effect Transistor Biosensors for Rapid Pathogen Detection; Royal Society of Chemistry, 2024; pp 73–92. doi:10.1039/bk9781837673421-00073
- Gao, Y.; Wang, Y. Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials. Applied physics reviews 2024, 11. doi:10.1063/5.0171364
- Ji, C.; Wei, J.; Zhang, L.; Hou, X.; Tan, J.; Yuan, Q.; Tan, W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chemical reviews 2023, 123, 12471–12506. doi:10.1021/acs.chemrev.3c00377
- Akash, A.; Bencurova, E.; Dandekar, T. How to make DNA data storage more applicable. Trends in biotechnology 2023, 42, 17–30. doi:10.1016/j.tibtech.2023.07.006
- Park, G.; Park, H.; Park, S.-C.; Jang, M.; Yoon, J.; Ahn, J.-H.; Lee, T. Recent Developments in DNA-Nanotechnology-Powered Biosensors for Zika/Dengue Virus Molecular Diagnostics. Nanomaterials (Basel, Switzerland) 2023, 13, 361. doi:10.3390/nano13020361