On the use of Raman spectroscopy to characterize mass-produced graphene nanoplatelets

Keith R. Paton, Konstantinos Despotelis, Naresh Kumar, Piers Turner and Andrew J. Pollard
Beilstein J. Nanotechnol. 2023, 14, 509–521. https://doi.org/10.3762/bjnano.14.42

Supporting Information

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 829.6 KB Download

Cite the Following Article

On the use of Raman spectroscopy to characterize mass-produced graphene nanoplatelets
Keith R. Paton, Konstantinos Despotelis, Naresh Kumar, Piers Turner and Andrew J. Pollard
Beilstein J. Nanotechnol. 2023, 14, 509–521. https://doi.org/10.3762/bjnano.14.42

How to Cite

Paton, K. R.; Despotelis, K.; Kumar, N.; Turner, P.; Pollard, A. J. Beilstein J. Nanotechnol. 2023, 14, 509–521. doi:10.3762/bjnano.14.42

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 11.2 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • You, H.; Hui, J.; Zhou, Y.; Vittore, K.; Zhang, J.; Chaney, L. E.; Chinta, S.; Zhao, Y.; Lim, G.; Lee, D.; Ainsworth, E. A.; Dunn, J. B.; Dravid, V. P.; Hersam, M. C.; Rowan, S. J. Sustainable Production of Biomass‐Derived Graphite and Graphene Conductive Inks from Biochar. Small 2024. doi:10.1002/smll.202406669
  • Jones, D. B.; Gascooke, J. R.; Gibson, C. T. Confocal Raman spectromicroscopy of graphene. Carbon 2024, 229, 119546. doi:10.1016/j.carbon.2024.119546
  • van Hazendonk, L. S.; Tuinier, R.; Foschino, E.; Matthews, L.; Friedrich, H.; Vis, M. Morphological analysis of polydisperse nanoplatelets using SAXS. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 702, 134997. doi:10.1016/j.colsurfa.2024.134997
  • Kabir, L.; Joo, Y. J.; Cho, K. Y.; Oh, W.-C. Electrochemical approach for nonenzymatic glucose sensing with noble metal-free 2D graphene-based ternary nanocomposite. Sensors and Actuators A: Physical 2024, 372, 115367. doi:10.1016/j.sna.2024.115367
  • Zong, H.; Gao, M.; Ul Hassan Mohsan, A.; Lin, Y.; Zhou, Y.; Yu, L.; Zhao, S.; Li, Y.; Zhang, J. Effect of static pressure on ultrasonic liquid phase exfoliation of few-layer graphene. Ultrasonics sonochemistry 2024, 105, 106863. doi:10.1016/j.ultsonch.2024.106863
  • Hill, W. C.; Barkan, T.; Amos, T.; Leng, W.; Hull, M. Investigation of commercial cut-resistant gloves claiming graphene additive content. Graphene and 2D Materials 2024, 9, 87–99. doi:10.1007/s41127-023-00070-6
  • Nurfazianawatie, M. Z.; Omar, H.; Rosman, N. F.; Malek, N. S. A.; Afaah, A. N.; Buniyamin, I.; Salifairus, M. J.; Malek, M. F.; Mahat, M. M.; Rusop, M.; Asli, N. A. Cooking oil waste from AYAMAS as a carbon source in forming multilayer graphene films. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2023, 45, 11198–11206. doi:10.1080/15567036.2023.2252372
  • Mallah, S. A.; Shaikh, H.; Memon, N.; Qazi, S. Fabrication of 1-octane sulphonic acid modified nanoporous graphene with tuned hydrophilicity for decontamination of industrial wastewater from organic and inorganic contaminants. RSC advances 2023, 13, 21926–21944. doi:10.1039/d3ra02602g
Other Beilstein-Institut Open Science Activities