Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

Joyita Roy, Souvik Pore and Kunal Roy
Beilstein J. Nanotechnol. 2023, 14, 939–950. https://doi.org/10.3762/bjnano.14.77

Supporting Information

Supporting Information File 1: Detailed information regarding heavy metals at different concentrations.
Format: XLSX Size: 45.7 KB Download

Cite the Following Article

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches
Joyita Roy, Souvik Pore and Kunal Roy
Beilstein J. Nanotechnol. 2023, 14, 939–950. https://doi.org/10.3762/bjnano.14.77

How to Cite

Roy, J.; Pore, S.; Roy, K. Beilstein J. Nanotechnol. 2023, 14, 939–950. doi:10.3762/bjnano.14.77

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 12.5 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Chen, S.; Fan, T.; Ren, T.; Zhang, N.; Zhao, L.; Zhong, R.; Sun, G. High-throughput prediction of oral acute toxicity in Rat and Mouse of over 100,000 polychlorinated persistent organic pollutants (PC-POPs) by interpretable data fusion-driven machine learning global models. Journal of hazardous materials 2024, 480, 136295. doi:10.1016/j.jhazmat.2024.136295
  • Roy, J.; Roy, K. Insights into nanoparticle toxicity against aquatic organisms using multivariate regression, read-across, and ML algorithms: Predictive models for Daphnia magna and Danio rerio. Aquatic toxicology (Amsterdam, Netherlands) 2024, 276, 107114. doi:10.1016/j.aquatox.2024.107114
  • Pore, S.; Roy, K. Insights into pharmacokinetic properties for exposure chemicals: predictive modelling of human plasma fraction unbound (fu) and hepatocyte intrinsic clearance (Clint) data using machine learning. Digital Discovery 2024, 3, 1852–1877. doi:10.1039/d4dd00082j
Other Beilstein-Institut Open Science Activities