Supporting Information
Supporting Information File 1: Detailed information regarding heavy metals at different concentrations. | ||
Format: XLSX | Size: 45.7 KB | Download |
Cite the Following Article
Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches
Joyita Roy, Souvik Pore and Kunal Roy
Beilstein J. Nanotechnol. 2023, 14, 939–950.
https://doi.org/10.3762/bjnano.14.77
How to Cite
Roy, J.; Pore, S.; Roy, K. Beilstein J. Nanotechnol. 2023, 14, 939–950. doi:10.3762/bjnano.14.77
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 12.5 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Roy, J.; Roy, K. Insights into nanoparticle toxicity against aquatic organisms using multivariate regression, read-across, and ML algorithms: Predictive models for Daphnia magna and Danio rerio. Aquatic toxicology (Amsterdam, Netherlands) 2024, 276, 107114. doi:10.1016/j.aquatox.2024.107114
- Pore, S.; Roy, K. Insights into pharmacokinetic properties for exposure chemicals: predictive modelling of human plasma fraction unbound (fu) and hepatocyte intrinsic clearance (Clint) data using machine learning. Digital Discovery 2024, 3, 1852–1877. doi:10.1039/d4dd00082j