Theoretical study of the electronic and optical properties of a composite formed by the zeolite NaA and a magnetite cluster
1,
2,
3,
4,5,
3,
6,
3 and
7
Joel Antúnez-García
Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Transp. Ensenada-Tijuana, Fracc. Playitas No. 3917, Ensenada, B. C. 22860, México
Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4, San Luis Potosí, S.L.P. 78216, México
1Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Transp. Ensenada-Tijuana, Fracc. Playitas No. 3917, Ensenada, B. C. 22860, México
2Departamento de Matemáticas, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, 83000, Hermosillo, Sonora, México
3Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, 22800 Ensenada, B. C., México
4Simulation in Materials Science Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam
5Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
6Universidad Politécnica de Baja California, Ingeniería Mecatrónica, Mexicali, Baja California 21376, México
7Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4, San Luis Potosí, S.L.P. 78216, México
Corresponding author email
Associate Editor: L. Fu Beilstein J. Nanotechnol.2025,16, 44–53.https://doi.org/10.3762/bjnano.16.5 Received 10 Apr 2024,
Accepted 30 Dec 2024,
Published 17 Jan 2025
The electronic and optical properties of a composite created by introducing a magnetite cluster into NaA zeolite have been investigated in this work using DFT calculations. The results obtained indicate that the electronic and optical properties of the composite are enhanced because of the cluster. However, the properties exhibited by the cluster outside the zeolite differ from those it presents when it is part of the composite. It is noteworthy that the composite exhibits magnetic properties of a half-semiconductor and a strong optical response within the visible and ultraviolet regions of the spectrum.
Zeolites are crystalline materials made up of aluminosilicates with a three-dimensional structure comprising pores and cavities of molecular dimensions. This unique structure enables them to operate as molecular sieves, allowing molecules smaller than the pore size to pass through while blocking the diffusion of larger ones. Furthermore, the physicochemical characteristics of zeolites depend largely on the chemical composition of the framework, specifically the Si/Al ratio [1,2]. These characteristics make zeolites highly appealing for a wide range of applications, including the production of fine chemicals [3,4], gas separation [5-7], ion exchange [8-10], heavy metal removal [11,12], sensor technologies [13-16], and biomedical applications [17].
Nanoscale materials represent a thriving field of research with a wide range of potential applications. Today, it is generally recognized that properties like hardness, reactivity, toxicity, and optical response are intricately linked to factors such as the chemical composition, particle size, structure, and geometry of these materials [18-20]. Hence, it is generally undesirable for nanoscale materials to undergo structural alterations because of environmental exposure or to change their properties because of the migration and coalescence of nanoparticles on the carrier material [21,22]. Such changes can significantly modify the physicochemical properties of the original nanomaterial. Also, the most interesting physicochemical properties are exhibited by clusters with subnanometer dimensions. For example, the active centers of the most efficient heterogeneous catalysts commonly fall within this range [23-26]. The challenge lies in the fact that, because of their pronounced tendency to aggregate, these materials must be deposited with a high level of dispersion to achieve the desired properties and performance. Furthermore, apart from not preventing potential exposure to unwanted molecules, the structural characteristics and, hence, the physicochemical properties of the cluster could be altered as a result of its interaction with the support material. Indeed, one viable solution to tackle these challenges is to utilize zeolites, which are frequently employed as inert support materials [27-32]. Zeolites are well suited for the hosting and confinement of molecular clusters with dimensions below 10 Å. This approach has the potential to stabilize these clusters and prolong their operational lifespan.
As zeolites are synthesized in powder form, they typically have grain sizes ranging from hundreds of nanometers to tens of micrometers. For applications where recovery at the end of a process is desirable, this can be a limitation. A very interesting alternative is the introduction of magnetic nanoparticles into zeolite crystals so that the resulting composite can respond to an external magnetic field [33]. By imparting magnetic properties to such composites, they can be efficiently recovered after capturing contaminants such as heavy metals [34-37] and dyes [38-40] in bodies of water, addressing a pressing environmental concern. Also, iron-modified zeolites have shown variations in both electric and magnetic properties that allow one to generate catalysts based on zeolites [41]. Among these types of composites consisting of zeolites modified with magnetic nanoparticles, sodium Linde A Type (LTA) zeolite, also known as NaA zeolite, stands out for its remarkable capacity and selectivity to capture various types of metals commonly found as contaminants in drinking water. These metals include Ca, K, Mg, Mn, Co, Zn, Cu, Pb, Cd, Cs, and Sr [42-46]. Because of the remarkable ion-exchange capacity of zeolites, their large surface area, and the well-organized porous systems with molecular sieve functionality, zeolites have long been fruitfully used in important industrial applications, mainly related to catalysis and wastewater treatment.
The rapid development of nanotechnology and the emergence of composite zeolite materials have opened up unprecedented opportunities for their application in nanomedicine [47]. The unique properties of magnetic nanoparticles allow them to be used for targeted drug delivery and visualization of internal organs [48]. Magnetic nanoparticles have unique magnetic properties and the ability to function at the cellular and molecular level of biological interactions. Of course, the evaluation of cytotoxicity and bioapplicability of each substance is a crucial issue before its use in clinical practice. Although there are fewer studies on the cytotoxicity of nanoparticles on zeolite carriers than other mesoporous matrices, most articles report low cytotoxicity of zeolites. Zeolites are classified as “Safe Substances for Food and Feed Additives” by the European Food Safety Authorities [49] and are “Generally Recognized as Safe” [50] by the United States Food and Drug Administration [51]. Also, iron-based magnetic compounds have the advantage of being a widely available and relatively cheap material, as well as being biocompatible and environmentally friendly [52,53].
While the potential of magnetic clusters to impart magnetic properties to zeolite composites is evident, a comprehensive understanding of these properties remains elusive because of the challenges in experimentally characterizing the structural properties of zeolite-hosted clusters. This field is relatively new, and experimental data on the precise structure and properties of these systems is very limited. Besides, to the best of our knowledge, there is a dearth of theoretical literature specifically addressing the study of magnetic clusters within zeolites. With this motivation, the present study evaluates the electronic properties of the magnetite cluster using DFT calculations and compares them to those in the case where the cluster is embedded within the NaA zeolite. Our work aims to provide insights into the structural and electronic properties of these systems, paving the way for future experimental investigations and the development of novel magnetic materials.
Computational Details
In the current study, the dehydrated sodium LTA zeolite, commonly denoted as NaA in the literature, with a ratio of Si/Al = 1 was considered. For this purpose, we adopted the trigonal cell proposed by Antúnez-García et al. [54], for which the lattice parameters are a = b = c = 17.179 Å and α = β = γ = 60°, described by the chemical formula 12Na+[Al12Si12O48]12−. As an additional consideration, we will assume that the distribution of aluminum atoms in the framework satisfies Löwenstein’s rule [55]. Also, we considered the highly stable Fe3O4 magnetite minimal cluster (see Figure 1), as proposed by Ermakov et al. [56], for the purposes of this study. After separately obtaining the optical and electronic properties of both the NaA zeolite and the cluster, our next step involved locating the position of minimum energy for the cluster within the zeolite framework. In essence, we compared the energy difference (after optimization) between housing the cluster in the α-cage and the β-cage (see [54,57] for cage identification). The results demonstrated that housing the cluster in the α-cage is energetically more favorable (Figure 2). This choice defined the composite under investigation (labeled as NaA-M) and served as the basis from which we computed its optical and electronic properties in this study.
The electronic and optical properties of zeolite NaA, the magnetite cluster, and the NaA-M composite were computed using the Wien2k computer code [58]. This code employs the APW+lo method in conjunction with density functional theory (DFT) to calculate electronic structures. To determine the exchange–correlation interaction, we utilized the Tran–Blaha-modified Becke–Johnson (TB-mBJ) approximation. This approach provides calculated bandgap values that exhibit excellent agreement with experimental data [59]. In detail, TB-mBJ combines the modified Becke–Johnson exchange potential with the local density approximation (LDA) for the correlation potential. The parameters used for the calculations were the following: The muffin-tin radii rmt are 1.70, 1.38, 1.60, 1.90, and 1.70 for aluminum, oxygen, silicon, sodium, and sulfur, respectively; the convergence number, that is, the smallest muffin-tin radii times the plane wave cutoff parameter, is set at RmtKmax = 6.0; the maximum l value for partial waves used inside atomic spheres is lmax = 10; and the magnitude of the largest vector in charge density Fourier expansion is Gmax = 12.0. The energy to separate the valence states of the core states was set at a value of −7.5 Ry; thus, the Al [1s2 2s2], O [1s2], Si [1s2 2s2], Na [1s2], and Fe [1s2 2s2 2p6] electronic states are considered as core states, and the rest of electronic states as valence states. For integration in the reciprocal space, a 3 × 3 × 3 mesh (14 k-points in the irreducible Brillouin Zone (IBZ)) is used during the self-consistent cycle, and a 6 × 6 × 6 mesh (112 k-points in IBZ) for the calculation of density of states and optical properties. For the energy convergence criterion, we consider a value of 1 × 10−4 Ry. For a valid comparison, the same values were used to calculate the electronic and optical properties of the isolated magnetite cluster. Finally, spin polarization was considered for both calculations (zeolite-cluster and isolated cluster).
Results and Discussion
In Figure 1a, the minimum energy configuration for the NaA-M composite is depicted, corresponding to the placement of the magnetite cluster within an α-cage of the NaA, rather than within a β-cage. In this figure, it can be observed that one of the Fe atoms from the magnetite cluster interacts with an oxygen atom from the pore surface, resulting in a Fe–O bond length of 2.00 Å. Figure 1b corresponds to the same composite but is described in a cubic cell, which shows clearly the location of the magnetite cluster in the α-cage. The representation of a composite in two different unit cells is possible because there exists a linear operator and its inverse that allow us to go from a trigonal to a cubic cell representation and vice versa. Figure 2a and Figure 2b display the structures and Fe–O bond distances of a magnetite cluster in both the isolated form and when it is introduced into the NaA zeolite to form the NaA-M composite. Comparing these structures directly and examining their respective Fe–O bond lengths reveal that the magnetite cluster undergoes structural changes when confined within the zeolite.
Figure 3a presents the band structure of the NaA zeolite, which exhibits no magnetic behavior. Notably, a pair of bands at 4.5 and 5.2 eV emerge within the forbidden zone. Previous research [60] has shown that these bands arise from the Na–O interaction and make a relatively low contribution to the total density of states (TDOS). In Figure 3b, when the magnetite cluster is introduced into the zeolite, new bands appear within the forbidden zone, and a decoupling of bands with spin up and spin down occurs, giving rise to magnetic behavior in the NaA-M composite. A comparison between Figure 3a and Figure 3b reveals that the introduction of the magnetite cluster reduces the bandgap and induces a shift in the band structure of the NaA zeolite toward negative energies, approximately by 1 eV. This observation is consistent with the results of prior research studies [61-63]. Figure 3c illustrates the band structure corresponding to the isolated magnetite cluster, focusing on the trajectory defined by the special points Y, Γ, and Z. A direct comparison between Figure 3b and Figure 3c highlights that the magnetite cluster introduces specific bands within the forbidden zone of the NaA zeolite. As it was expected, these bands do not entirely align with those of the isolated cluster. Given the observed structural modifications of the cluster when integrated into the zeolite (Figure 2), it is expected that its electronic properties would also undergo changes.
Figure 4a displays the total density of states (TDOS) for the NaA zeolite, featuring a primary bandgap of 6.5 eV, along with additional bandgaps originating from states associated with the bands at 4.5 and 5.2 eV. In Figure 4b, the TDOS for the NaA-M composite is presented, clearly revealing the decoupling of the spin-up and spin-down states, resulting in a “half-semiconductor”-type magnetic behavior. In this figure, the enlarged region around the Fermi level highlights a distinct bandgap of 1.26 eV, which is solely attributable to the interaction between the Fe and O atoms within the magnetite cluster. Moreover, Figure 4b shows that overcoming this potential energy barrier enables a transition from spin up to spin down. Figure 4c displays the TDOS for the magnetite cluster. Notably, it reveals the presence of both spin polarizations at the Fermi level, with the spin-down polarization being the dominant one. This observation is indicative of a ferromagnetic behavior, aligning with the findings of Ermakov and colleagues [56]. Furthermore, an initial bandgap of ≈0.68 eV is observed, leading to a spin-down state, and an additional energy of ≈0.2 eV is needed for the transition to a spin-up state. Figure 5 illustrates the spin density difference (up–down) isosurface, with a value set at 0.01 e/Bohr3. This calculation considers only the valence states. The computed values of the difference fall within the range of −0.009 to 1.794 e/Bohr3, indicating that the effective component corresponds solely to spin up, consistent with observations in Figure 4b. Furthermore, the figure demonstrates that the spin density difference is practically associated with the cluster. The studies also revealed that the total magnetic moment of the cluster alone has a magnitude of 10 μB; when it is part of the composite, it reaches a value of 12 μB. These results show that the confinement effect of the NaA zeolite offers the possibility of altering not only the electronic and magnetic properties, but also the spin channels of the cluster.
Figure 6 provides a comparison of the behavior of the real and imaginary components of relative permittivity ε(=ε1 + iε2) and energy loss function (ELF) for the zeolite NaA (Figure 6a) and the NaA-M composite (Figure 6b). Although both the relative permittivity and the ELF are described by a 3 × 3 tensor, for simplicity, we will focus solely on the dominant components located on its main diagonal, labeled as xx, yy, and zz, respectively. In Figure 6a, it is evident that for energies below 6.8 eV (the value that corresponds to the zeolite bandgap), the value of ε2 is practically zero. Under such circumstances, the velocity (v) of electromagnetic wave propagation in a dielectric medium can be described as , where c is the speed of light in a vacuum. Within this range ε1xx = ε1yy = ε1zz then ε1 = 1.5; consequently, the speed with which an electromagnetic wave propagates through this zeolite is v = 0.81c. Of course, the speed of propagation of electromagnetic waves outside this range may not be the same. Given that ε2 quantifies energy dissipation within the medium [64], Figure 6a shows that ideally the zeolite exhibits null dissipation within this energy range. Figure 6a indicates that the zeolite exhibits negligible dissipation in this specific energy range. Particularly within the visible spectrum (ranging from 1.63 to 3.26 eV or from 380 to 700 nm), this absence of dissipation shows that the material is transparent, a characteristic commonly associated with distinct aluminosilicates [65-73]. Given that the ELF is connected to the relative permittivity as follows [74]:
it is anticipated that its behavior below the bandgap value will be consistent with that observed in Figure 6a.
Figure 6b shows that when the cluster is introduced into the zeolite, the relative permittivity of the NaA-M composite exhibits a certain degree of anisotropy. In particular, for the range from 0 to 8 eV, the component ε1yy, both real and complex, has some intervals where it is the highest. Note that within this interval is the visible range; therefore, unlike pure zeolite, the composite exhibits a response within the visible and ultraviolet regions of the spectrum (i.e., non-zero dissipation). For energies less than 1.26 eV, all imaginary parts of the relative permittivity are zero. In this small range, for an average value of the relative permittivity, ε1 = 1.6, we obtain that v = 0.79c, which means that within this energy range, electromagnetic waves slow down by about ≈2.5% compared with pure zeolite.
In Figure 7, we compare the behavior of the real and imaginary components of the relative permittivity, as well as the ELF, in the energy range from 0 to 8 eV when the cluster is part of the NaA-M composite and when it is isolated. A direct comparison of the optical properties between these two scenarios reveals significant differences. For instance, in Figure 7a, it is evident that the primary peak of ε1 occurs at 3.54 eV, while for ε2 and the ELF, the peak energies are very close to each other (3.63 and 3.67 eV, respectively). In contrast, for the isolated cluster (Figure 7b), the positions of the main peaks in ε1, ε2, and the ELF exhibit notable differences. Additionally, it is noteworthy that the ELF exhibited by the composite closely mirrors the behavior of ε2, whereas, for the cluster alone, ε2 and the ELF demonstrate substantial discrepancies within the 4.5 eV to 6.0 eV range.
These results indicate that, for the composite, it is possible to deduce ε2 from the ELF, which is not valid for an isolated cluster. Thus, it becomes evident that the optical response of the magnetite cluster within the zeolite differs from its behavior when existing in isolation. An additional observation worth noting is the behavior of both ε2 and the ELF of the composite (as shown in Figure 7a), which indicates that, unfortunately, the primary peak occurs outside the visible range. However, considering that the current results highlight the modification of the cluster’s optical properties when introduced into the zeolite, there is potential to stimulate a peak response within the visible spectrum. This could be achieved by either adjusting the Si/Al ratio of the zeolite framework or by exploring the possibility of introducing the cluster into a different zeolite structure. These approaches offer avenues for tailoring the optical characteristics for specific applications within the visible spectrum.
Conclusion
In this work, the influence of the inclusion of a magnetite cluster into NaA zeolite is studied through DFT calculations. The findings reveal that the cluster not only introduces states into the forbidden energy gap of the zeolite, but it also affects the band structure of the zeolite framework. Additionally, the geometry of the cluster stabilized in the zeolite cavity undergoes structural changes, which leads to modifications of its electronic and magnetic properties. Specifically, the investigation shows that the cluster within the zeolite exhibits characteristics of a half-semiconductor in contrast to the free cluster in the vacuum, which presents ferromagnetic behavior. Moreover, the results suggest that introducing the cluster into zeolite enhances the control over the transition between spin polarizations, making it a promising avenue for further exploration in spin-related applications.
The examination of optical properties reveals that including a magnetite cluster in the zeolite gives it an optical response within the visible and ultraviolet range of the spectrum. It should be noted that the optical properties exhibited by the cluster within the zeolite differ from the optical properties of the cluster outside the zeolite. This suggests that zeolites, when combined with certain clusters, can be effectively utilized to achieve an optically desirable response, particularly within the visible region of the spectrum.
Funding
This research was supported by DGAPA-PAPIIT-UNAM IG101623. Computing time was provided by LANCAD-UNAM-DGTIC-084, LANCAD-UNAM-DGTIC-423, and the National Supercomputing Laboratory of Southeast Mexico (project 202301020C). R.N.G. acknowledges the computer time support from ACARUS at Universidad de Sonora (UNISON). H’Linh Hmok thanks Van Lang University for its support.
The data that supports the findings of this study is available from the corresponding author upon reasonable request.
References
Janda, A.; Bell, A. T. J. Am. Chem. Soc.2013,135, 19193–19207. doi:10.1021/ja4081937
Return to citation in text:
[1]
Li, J.; Gao, M.; Yan, W.; Yu, J. Chem. Sci.2023,14, 1935–1959. doi:10.1039/d2sc06010h
Return to citation in text:
[1]
Perot, G.; Guisnet, M. Zeolites in Fine Chemical Synthesis - Contribution to Environmental Protection. Precision Process Technology; Springer: Dordrecht, Netherlands, 1993; pp 157–174. doi:10.1007/978-94-011-1759-3_12
Return to citation in text:
[1]
Kosinov, N.; Gascon, J.; Kapteijn, F.; Hensen, E. J. M. J. Membr. Sci.2016,499, 65–79. doi:10.1016/j.memsci.2015.10.049
Return to citation in text:
[1]
Pérez-Pellitero, J.; Pirngruber, G. D. Industrial Zeolite Applications for Gas Adsorption and Separation Processes. New Developments in Adsorption/Separation of Small Molecules by Zeolites; Springer International Publishing: Cham, Switzerland, 2020; pp 195–225. doi:10.1007/430_2020_75
Return to citation in text:
[1]
Boer, D. G.; Langerak, J.; Pescarmona, P. P. ACS Appl. Energy Mater.2023,6, 2634–2656. doi:10.1021/acsaem.2c03605
Return to citation in text:
[1]
Colella, C. Miner. Deposita1996,31, 554–562. doi:10.1007/bf00196136
Return to citation in text:
[1]
Koike, N.; Iyoki, K.; Wang, B.; Yanaba, Y.; Elangovan, S. P.; Itabashi, K.; Chaikittisilp, W.; Okubo, T. Dalton Trans.2018,47, 9546–9553. doi:10.1039/c8dt01391h
Return to citation in text:
[1]
Campanile, A.; Liguori, B.; Ferone, C.; Caputo, D.; Aprea, P. Sci. Rep.2022,12, 3686. doi:10.1038/s41598-022-07679-2
Return to citation in text:
[1]
Erdem, E.; Karapinar, N.; Donat, R. J. Colloid Interface Sci.2004,280, 309–314. doi:10.1016/j.jcis.2004.08.028
Return to citation in text:
[1]
Kuldeyev, E.; Seitzhanova, M.; Tanirbergenova, S.; Tazhu, K.; Doszhanov, E.; Mansurov, Z.; Azat, S.; Nurlybaev, R.; Berndtsson, R. Water2023,15, 2215. doi:10.3390/w15122215
Return to citation in text:
[1]
Xu, X.; Wang, J.; Long, Y. Sensors2006,6, 1751–1764. doi:10.3390/s6121751
Return to citation in text:
[1]
Murrieta-Rico, F. N.; Petranovskii, V.; Sergiyenko, O.; Grishin, M.; Sarvadii, S.; de Dios Sanchez-Lopez, J.; Nieto-Hipolito, J. I.; Galván, D. H.; Antúnez-García, J.; Yocupicio-Gaxiola, R. I. Measurement2021,172, 108935. doi:10.1016/j.measurement.2020.108935
Return to citation in text:
[1]
Murrieta-Rico, F. N.; Petranovskii, V.; Galván, D. H.; Antúnez-García, J.; Sergiyenko, O.; Lindner, L.; Rivas-López, M.; Grishin, M.; Sarvadii, S. IEEE Sens. J.2022,22, 10163–10172. doi:10.1109/jsen.2022.3148039
Return to citation in text:
[1]
Kadja, G. T. M.; Culsum, N. T. U.; Mardiana, S.; Azhari, N. J.; Fajar, A. T. N.; Irkham. Mater. Today Commun.2022,33, 104331. doi:10.1016/j.mtcomm.2022.104331
Return to citation in text:
[1]
Serati-Nouri, H.; Jafari, A.; Roshangar, L.; Dadashpour, M.; Pilehvar-Soltanahmadi, Y.; Zarghami, N. Mater. Sci. Eng., C2020,116, 111225. doi:10.1016/j.msec.2020.111225
Return to citation in text:
[1]
Abbasi, R.; Shineh, G.; Mobaraki, M.; Doughty, S.; Tayebi, L. J. Nanopart. Res.2023,25, 43. doi:10.1007/s11051-023-05690-w
Return to citation in text:
[1]
Vogt, C.; Meirer, F.; Monai, M.; Groeneveld, E.; Ferri, D.; van Santen, R. A.; Nachtegaal, M.; Unocic, R. R.; Frenkel, A. I.; Weckhuysen, B. M. Nat. Commun.2021,12, 7096. doi:10.1038/s41467-021-27474-3
Return to citation in text:
[1]
Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F.; Zapol, P. Nat. Mater.2009,8, 213–216. doi:10.1038/nmat2384
Return to citation in text:
[1]
Li, Z.; Ji, S.; Liu, Y.; Cao, X.; Tian, S.; Chen, Y.; Niu, Z.; Li, Y. Chem. Rev.2020,120, 623–682. doi:10.1021/acs.chemrev.9b00311
Return to citation in text:
[1]
Dong, C.; Li, Y.; Cheng, D.; Zhang, M.; Liu, J.; Wang, Y.-G.; Xiao, D.; Ma, D. ACS Catal.2020,10, 11011–11045. doi:10.1021/acscatal.0c02818
Return to citation in text:
[1]
Yao, C.; Guo, N.; Xi, S.; Xu, C.-Q.; Liu, W.; Zhao, X.; Li, J.; Fang, H.; Su, J.; Chen, Z.; Yan, H.; Qiu, Z.; Lyu, P.; Chen, C.; Xu, H.; Peng, X.; Li, X.; Liu, B.; Su, C.; Pennycook, S. J.; Sun, C.-J.; Li, J.; Zhang, C.; Du, Y.; Lu, J. Nat. Commun.2020,11, 4389. doi:10.1038/s41467-020-18080-w
Return to citation in text:
[1]
Fernández, L.; Martí, V.; García, H. Phys. Chem. Chem. Phys.1999,1, 3689–3695. doi:10.1039/a903291f
Return to citation in text:
[1]
North, M. R.; Swaddle, T. W. Inorg. Chem.2000,39, 2661–2665. doi:10.1021/ic0000707
Return to citation in text:
[1]
Werst, D. W.; Trifunac, A. D. Stud. Phys. Theor. Chem.2001,87, 395–409. doi:10.1016/s0167-6881(01)80017-3
Return to citation in text:
[1]
Turro, N. J. Proc. Natl. Acad. Sci. U. S. A.2002,99, 4805–4809. doi:10.1073/pnas.032657999
Return to citation in text:
[1]
Auerbach, S. M.; Carrado, K. A.; Dutta, P. K. Handbook of Zeolite Science and Technology, 1st ed.; Marcel Dekker: New York, NY, USA, 2003. doi:10.1201/9780203911167
Return to citation in text:
[1]
Loiola, A. R.; Bessa, R. A.; Oliveira, C. P.; Freitas, A. D. L.; Soares, S. A.; Bohn, F.; Pergher, S. B. C. J. Magn. Magn. Mater.2022,560, 169651. doi:10.1016/j.jmmm.2022.169651
Return to citation in text:
[1]
Ebner, A. D.; Ritter, J. A.; Navratil, J. D. Ind. Eng. Chem. Res.2001,40, 1615–1623. doi:10.1021/ie000695c
Return to citation in text:
[1]
Pode, V.; Todinca, T.; Pode, R.; Dalea, V.; Popovici, E. Stud. Surf. Sci. Catal.2002,142, 1825–1831. doi:10.1016/s0167-2991(02)80358-5
Return to citation in text:
[1]
Oliveira, L. C. A.; Petkowicz, D. I.; Smaniotto, A.; Pergher, S. B. C. Water Res.2004,38, 3699–3704. doi:10.1016/j.watres.2004.06.008
Return to citation in text:
[1]
Amodu, O. S.; Ojumu, T. V.; Ntwampe, S. K.; Ayanda, O. S. J. Encapsulation Adsorpt. Sci.2015,05, 191–203. doi:10.4236/jeas.2015.54016
Return to citation in text:
[1]
Piri, F.; Mollahosseini, A.; khadir, A.; Milani Hosseini, M. J. Environ. Chem. Eng.2019,7, 103338. doi:10.1016/j.jece.2019.103338
Return to citation in text:
[1]
Murrieta-Rico, F. N.; Antúnez-García, J.; Yocupicio-Gaxiola, R. I.; Zamora, J.; Serrato, A. R.; Petranovskii, V. Catalysts2023,13, 1159. doi:10.3390/catal13081159
Return to citation in text:
[1]
Peng, Z.-d.; Lin, X.-m.; Zhang, Y.-l.; Hu, Z.; Yang, X.-j.; Chen, C.-y.; Chen, H.-y.; Li, Y.-t.; Wang, J.-j. Sci. Total Environ.2021,772, 145355. doi:10.1016/j.scitotenv.2021.145355
Return to citation in text:
[1]
Kwon, S.; Kim, C.; Han, E.; Lee, H.; Cho, H. S.; Choi, M. J. Hazard. Mater.2021,408, 124419. doi:10.1016/j.jhazmat.2020.124419
Return to citation in text:
[1]
Ramutshatsha-Makhwedzha, D.; Ndungu, P. G.; Nomngongo, P. N. J. Iran. Chem. Soc.2022,19, 2949–2961. doi:10.1007/s13738-022-02506-x
Return to citation in text:
[1]
Santos, B. A.; de Morais França, A. M.; da Silva, L. T. V.; Gouveia, A. G. S.; Vidal, C. B.; Loiola, A. R.; Nascimento, R. F. Int. J. Environ. Anal. Chem.2024,104, 3913–3935. doi:10.1080/03067319.2022.2098020
Return to citation in text:
[1]
Buzukashvili, S.; Hu, W.; Sommerville, R.; Brooks, O.; Kökkılıç, O.; Rowson, N. A.; Ouzilleau, P.; Waters, K. E. Crystals2023,13, 1369. doi:10.3390/cryst13091369
Return to citation in text:
[1]
Derakhshankhah, H.; Jafari, S.; Sarvari, S.; Barzegari, E.; Moakedi, F.; Ghorbani, M.; Shiri Varnamkhasti, B.; Jaymand, M.; Izadi, Z.; Tayebi, L. Int. J. Nanomed.2020, 363–386. doi:10.2147/ijn.s234573
Return to citation in text:
[1]
Mohammed, L.; Gomaa, H. G.; Ragab, D.; Zhu, J. Particuology2017,30, 1–14. doi:10.1016/j.partic.2016.06.001
Return to citation in text:
[1]
EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). EFSA J.2013,11, 3155. doi:10.2903/j.efsa.2013.3155
Return to citation in text:
[1]
Cornell, R. M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses; Wiley-VCH: Weinheim, Germany, 2003. doi:10.1002/3527602097
Return to citation in text:
[1]
Antúnez-García, J.; Galván, D. H.; Petranovskii, V.; Murrieta-Rico, F. N.; Yocupicio-Gaxiola, R. I.; Shelyapina, M. G.; Fuentes-Moyado, S. Comput. Mater. Sci.2021,196, 110557. doi:10.1016/j.commatsci.2021.110557
Return to citation in text:
[1]
[2]
Loewenstein, W. Am. Mineral.1954,39, 92–96.
Return to citation in text:
[1]
Ermakov, A. I.; Yurova, I. V.; Davydov, A. D.; Khorishko, B. A.; Lar’kov, A. P.; Stanislavchik, K. V. Russ. J. Gen. Chem.2013,83, 1493–1500. doi:10.1134/s1070363213080033
Return to citation in text:
[1]
[2]
Baerlocher, C.; McCusker, L. B.; Olson, D. H. Atlas of Zeolite Framework Types, 6th ed.; Elsevier: London, UK, 2007. doi:10.1016/b978-0-444-53064-6.x5186-x
Return to citation in text:
[1]
WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties; Technische Universität Wien: Wien, Autria, 2001.
Return to citation in text:
[1]
Núñez-González, R.; Xiao, M.; Antúnez-García, J.; Ponce-Ruiz, J. L. A.; Reyes-Serrato, A.; Petranovskii, V.; Murrieta-Rico, F. N.; Rakov, N. Phys. Status Solidi B2023,260, 2300378. doi:10.1002/pssb.202300378
Return to citation in text:
[1]
Antúnez-García, J.; Galván, D. H.; Posada-Amarillas, A.; Petranovskii, V. J. Mol. Struct.2014,1059, 232–238. doi:10.1016/j.molstruc.2013.09.019
Return to citation in text:
[1]
Antúnez-García, J.; Galván, D. H.; Petranovskii, V.; Posada-Amarillas, A. Comput. Mater. Sci.2015,106, 140–148. doi:10.1016/j.commatsci.2015.04.054
Return to citation in text:
[1]
Antúnez-García, J.; Posada-Amarillas, A.; Galván, D. H.; Smolentseva, E.; Petranovskii, V.; Moyado, S. F. RSC Adv.2016,6, 79160–79165. doi:10.1039/c6ra13505f
Return to citation in text:
[1]
Li, Y. Plasmonic Optics: Theory and Applications; SPIE Press: Bellingham, WA, USA, 2017. doi:10.1117/3.2263757
Return to citation in text:
[1]
Shu, G.; Liu, J.; Chiang, A. S. T.; Thompson, R. W. Adv. Mater. (Weinheim, Ger.)2006,18, 185–189. doi:10.1002/adma.200401980
Return to citation in text:
[1]
Suárez, S.; Devaux, A.; Bañuelos, J.; Bossart, O.; Kunzmann, A.; Calzaferri, G. Adv. Funct. Mater.2007,17, 2298–2306. doi:10.1002/adfm.200600925
Return to citation in text:
[1]
Li, H.; Ding, Y.; Cao, P.; Liu, H.; Zheng, Y. J. Mater. Chem.2012,22, 4056. doi:10.1039/c2jm14432h
Return to citation in text:
[1]
Zhang, X.; Hu, L.; Ren, J. J. Phys. Chem. C2020,124, 1594–1608. doi:10.1021/acs.jpcc.9b10433
Return to citation in text:
[1]
Kumar, A.; Chakrabarti, A.; Shekhawat, M. S.; Molla, A. R. Thermochim. Acta2019,676, 155–163. doi:10.1016/j.tca.2019.04.006
Return to citation in text:
[1]
Kota, V. D.; Pullano, S. A.; Fiorillo, A. S.; Mahbub, I. Effects of Geometry on Performances of Optically Unobtrusive Zeolite-Based Electrodes. In 2022 IEEE Sensors, Dallas, TX, USA, Oct 30–Nov 2, 2022; IEEE, 2022; pp 1–4. doi:10.1109/sensors52175.2022.9967325
Return to citation in text:
[1]
Li, M.; Dong, C.; Ma, Y.; Jiang, H. Nanomaterials2023,13, 530. doi:10.3390/nano13030530
Return to citation in text:
[1]
Munguti, L. K.; Dejene, F. B.; Muthee, D. K. Mater. Sci. Eng., B2023,289, 116281. doi:10.1016/j.mseb.2023.116281
Return to citation in text:
[1]
Pflüger, J.; Fink, J. Determination of Optical Constants by High-Energy, Electron-Energy-Loss Spectroscopy (EELS). Handbook of Optical Constants of Solids; Academic Press: San Diego, CA, USA, 1998; Vol. 2, pp 293–311. doi:10.1016/b978-0-08-055630-7.50016-x
Return to citation in text:
[1]
Núñez-González, R.; Xiao, M.; Antúnez-García, J.; Ponce-Ruiz, J. L. A.; Reyes-Serrato, A.; Petranovskii, V.; Murrieta-Rico, F. N.; Rakov, N. Phys. Status Solidi B2023,260, 2300378. doi:10.1002/pssb.202300378
Murrieta-Rico, F. N.; Antúnez-García, J.; Yocupicio-Gaxiola, R. I.; Zamora, J.; Serrato, A. R.; Petranovskii, V. Catalysts2023,13, 1159. doi:10.3390/catal13081159
Ramutshatsha-Makhwedzha, D.; Ndungu, P. G.; Nomngongo, P. N. J. Iran. Chem. Soc.2022,19, 2949–2961. doi:10.1007/s13738-022-02506-x
45.
Santos, B. A.; de Morais França, A. M.; da Silva, L. T. V.; Gouveia, A. G. S.; Vidal, C. B.; Loiola, A. R.; Nascimento, R. F. Int. J. Environ. Anal. Chem.2024,104, 3913–3935. doi:10.1080/03067319.2022.2098020
46.
Buzukashvili, S.; Hu, W.; Sommerville, R.; Brooks, O.; Kökkılıç, O.; Rowson, N. A.; Ouzilleau, P.; Waters, K. E. Crystals2023,13, 1369. doi:10.3390/cryst13091369
Pérez-Pellitero, J.; Pirngruber, G. D. Industrial Zeolite Applications for Gas Adsorption and Separation Processes. New Developments in Adsorption/Separation of Small Molecules by Zeolites; Springer International Publishing: Cham, Switzerland, 2020; pp 195–225. doi:10.1007/430_2020_75
7.
Boer, D. G.; Langerak, J.; Pescarmona, P. P. ACS Appl. Energy Mater.2023,6, 2634–2656. doi:10.1021/acsaem.2c03605
Perot, G.; Guisnet, M. Zeolites in Fine Chemical Synthesis - Contribution to Environmental Protection. Precision Process Technology; Springer: Dordrecht, Netherlands, 1993; pp 157–174. doi:10.1007/978-94-011-1759-3_12
Vogt, C.; Meirer, F.; Monai, M.; Groeneveld, E.; Ferri, D.; van Santen, R. A.; Nachtegaal, M.; Unocic, R. R.; Frenkel, A. I.; Weckhuysen, B. M. Nat. Commun.2021,12, 7096. doi:10.1038/s41467-021-27474-3
Auerbach, S. M.; Carrado, K. A.; Dutta, P. K. Handbook of Zeolite Science and Technology, 1st ed.; Marcel Dekker: New York, NY, USA, 2003. doi:10.1201/9780203911167
Kota, V. D.; Pullano, S. A.; Fiorillo, A. S.; Mahbub, I. Effects of Geometry on Performances of Optically Unobtrusive Zeolite-Based Electrodes. In 2022 IEEE Sensors, Dallas, TX, USA, Oct 30–Nov 2, 2022; IEEE, 2022; pp 1–4. doi:10.1109/sensors52175.2022.9967325
Loiola, A. R.; Bessa, R. A.; Oliveira, C. P.; Freitas, A. D. L.; Soares, S. A.; Bohn, F.; Pergher, S. B. C. J. Magn. Magn. Mater.2022,560, 169651. doi:10.1016/j.jmmm.2022.169651
Pflüger, J.; Fink, J. Determination of Optical Constants by High-Energy, Electron-Energy-Loss Spectroscopy (EELS). Handbook of Optical Constants of Solids; Academic Press: San Diego, CA, USA, 1998; Vol. 2, pp 293–311. doi:10.1016/b978-0-08-055630-7.50016-x
Ermakov, A. I.; Yurova, I. V.; Davydov, A. D.; Khorishko, B. A.; Lar’kov, A. P.; Stanislavchik, K. V. Russ. J. Gen. Chem.2013,83, 1493–1500. doi:10.1134/s1070363213080033
Murrieta-Rico, F. N.; Petranovskii, V.; Sergiyenko, O.; Grishin, M.; Sarvadii, S.; de Dios Sanchez-Lopez, J.; Nieto-Hipolito, J. I.; Galván, D. H.; Antúnez-García, J.; Yocupicio-Gaxiola, R. I. Measurement2021,172, 108935. doi:10.1016/j.measurement.2020.108935
15.
Murrieta-Rico, F. N.; Petranovskii, V.; Galván, D. H.; Antúnez-García, J.; Sergiyenko, O.; Lindner, L.; Rivas-López, M.; Grishin, M.; Sarvadii, S. IEEE Sens. J.2022,22, 10163–10172. doi:10.1109/jsen.2022.3148039
16.
Kadja, G. T. M.; Culsum, N. T. U.; Mardiana, S.; Azhari, N. J.; Fajar, A. T. N.; Irkham. Mater. Today Commun.2022,33, 104331. doi:10.1016/j.mtcomm.2022.104331
Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F.; Zapol, P. Nat. Mater.2009,8, 213–216. doi:10.1038/nmat2384
24.
Li, Z.; Ji, S.; Liu, Y.; Cao, X.; Tian, S.; Chen, Y.; Niu, Z.; Li, Y. Chem. Rev.2020,120, 623–682. doi:10.1021/acs.chemrev.9b00311
25.
Dong, C.; Li, Y.; Cheng, D.; Zhang, M.; Liu, J.; Wang, Y.-G.; Xiao, D.; Ma, D. ACS Catal.2020,10, 11011–11045. doi:10.1021/acscatal.0c02818
Antúnez-García, J.; Galván, D. H.; Petranovskii, V.; Murrieta-Rico, F. N.; Yocupicio-Gaxiola, R. I.; Shelyapina, M. G.; Fuentes-Moyado, S. Comput. Mater. Sci.2021,196, 110557. doi:10.1016/j.commatsci.2021.110557
57.
Baerlocher, C.; McCusker, L. B.; Olson, D. H. Atlas of Zeolite Framework Types, 6th ed.; Elsevier: London, UK, 2007. doi:10.1016/b978-0-444-53064-6.x5186-x
Ermakov, A. I.; Yurova, I. V.; Davydov, A. D.; Khorishko, B. A.; Lar’kov, A. P.; Stanislavchik, K. V. Russ. J. Gen. Chem.2013,83, 1493–1500. doi:10.1134/s1070363213080033
Cornell, R. M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses; Wiley-VCH: Weinheim, Germany, 2003. doi:10.1002/3527602097
Antúnez-García, J.; Galván, D. H.; Petranovskii, V.; Murrieta-Rico, F. N.; Yocupicio-Gaxiola, R. I.; Shelyapina, M. G.; Fuentes-Moyado, S. Comput. Mater. Sci.2021,196, 110557. doi:10.1016/j.commatsci.2021.110557