Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

Samer Darwich, Karine Mougin, Akshata Rao, Enrico Gnecco, Shrisudersan Jayaraman and Hamidou Haidara
Beilstein J. Nanotechnol. 2011, 2, 85–98. https://doi.org/10.3762/bjnano.2.10

Cite the Following Article

Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions
Samer Darwich, Karine Mougin, Akshata Rao, Enrico Gnecco, Shrisudersan Jayaraman and Hamidou Haidara
Beilstein J. Nanotechnol. 2011, 2, 85–98. https://doi.org/10.3762/bjnano.2.10

How to Cite

Darwich, S.; Mougin, K.; Rao, A.; Gnecco, E.; Jayaraman, S.; Haidara, H. Beilstein J. Nanotechnol. 2011, 2, 85–98. doi:10.3762/bjnano.2.10

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Wood, J.; Palms, D.; Dabare, R.; Vasilev, K.; Bright, R. Exploring the Challenges of Characterising Surface Topography of Polymer-Nanoparticle Composites. Nanomaterials (Basel, Switzerland) 2024, 14, 1275. doi:10.3390/nano14151275
  • Oliveira, A. E. F.; Pereira, A. C.; Resende, M. A. C.; Ferreira, L. F. Gold Nanoparticles: A Didactic Step-by-Step of the Synthesis Using the Turkevich Method, Mechanisms, and Characterizations. Analytica 2023, 4, 250–263. doi:10.3390/analytica4020020
  • Zeng, Q.; Li, C.; Zhao, D.; Lu, X. Atomic-scale study on particle movement mechanism during silicon substrate cleaning using ReaxFF MD. Computational Materials Science 2022, 214, 111751. doi:10.1016/j.commatsci.2022.111751
  • Goel, P.; Arora, M. Nano-Engineered Gold Particles for Pesticide Mineralization in Contaminated Water. Water Science and Technology Library; Springer International Publishing, 2022; pp 227–252. doi:10.1007/978-3-031-00812-2_10
  • Das, A.; Maiti, N. Synthesis of Functionalized Noble Metal Nanoparticles. Indian Institute of Metals Series; Springer Nature Singapore, 2022; pp 515–580. doi:10.1007/978-981-16-1803-1_13
  • Alsharif, N.; Eshaghi, B.; Reinhard, B. M.; Brown, K. A. Physiologically Relevant Mechanics of Biodegradable Polyester Nanoparticles. Nano letters 2020, 20, 7536–7542. doi:10.1021/acs.nanolett.0c03004
  • Kim, G. W.; Yoon, S.; Lee, J.; Lee, J. H.; Ha, J. W. High-Throughput Characterization and In Situ Control of Three-Dimensional Orientations of Single Gold Nanorods Coated with Spherical Mesoporous Silica Shell. The Journal of Physical Chemistry C 2020, 124, 14279–14286. doi:10.1021/acs.jpcc.0c03652
  • Cherepanov, V. V.; Naumovets, A.; Posudievsky, O. Y.; Koshechko, V. G.; Pokhodenko, V. D. Self-assembly of the deposited graphene-like nanoparticles and possible nanotrack artefacts in AFM studies. Nano Express 2020, 1, 010004. doi:10.1088/2632-959x/ab763a
  • Korayem, M. H.; Khaksar, H. A survey on dynamic modeling of manipulation of nanoparticles based on atomic force microscope and investigation of involved factors. Journal of Nanoparticle Research 2020, 22, 1–19. doi:10.1007/s11051-019-4742-8
  • Oras, S.; Vlassov, S.; Vigonski, S.; Polyakov, B.; Antsov, M.; Zadin, V.; Lõhmus, R.; Mougin, K. The effect of heat treatment on the morphology and mobility of Au nanoparticles. Beilstein journal of nanotechnology 2020, 11, 61–67. doi:10.3762/bjnano.11.6
  • Bondžić, A. M.; Leskovac, A.; Petrović, S.; Anićijević, D. D. V.; Luce, M.; Massai, L.; Generosi, A.; Paci, B.; Cricenti, A.; Messori, L.; Vasić, V. Conjugates of Gold Nanoparticles and Antitumor Gold(III) Complexes as a Tool for Their AFM and SERS Detection in Biological Tissue. International journal of molecular sciences 2019, 20, 6306. doi:10.3390/ijms20246306
  • Yin, Y.; Xu, H.; Wang, Y.; Liu, Z.; Zhang, S.; Weng, Z.; Song, Z.; Wang, Z. Improving Adhesion Between Nanoparticles and Surface of Mica Substrate by Aminosilane Modification. Plasmonics 2019, 15, 399–407. doi:10.1007/s11468-019-01030-8
  • Craciun, A. D.; Donnio, B.; Gallani, J.-L.; Rastei, M. V. High-resolution manipulation of gold nanorods with an atomic force microscope. Nanotechnology 2019, 31, 085302. doi:10.1088/1361-6528/ab5404
  • Kumari, Y.; Kaur, G.; Kumar, R.; Singh, S. K.; Gulati, M.; Khursheed, R.; Clarisse, A.; Gowthamarajan, K.; Karri, V. N. R.; Mahalingam, R.; Ghosh, D.; Awasthi, A.; Kumar, R.; Yadav, A. K.; Kapoor, B.; Singh, P. K.; Dua, K.; Porwal, O. Gold nanoparticles: New routes across old boundaries. Advances in colloid and interface science 2019, 274, 102037. doi:10.1016/j.cis.2019.102037
  • Zheng, Y.; Zhang, J.; Zhang, R.; Luo, Z.; Wang, C.; Shi, S. Gold nano particles synthesized from Magnolia officinalis and anticancer activity in A549 lung cancer cells. Artificial cells, nanomedicine, and biotechnology 2019, 47, 3101–3109. doi:10.1080/21691401.2019.1645152
  • Yuehua, L.; Yang, K.; Zou, H.; Wang, K.; Huang, S.; Rengarajan, T.; Wang, L. Gold nano particles synthesized from Strychni semen and its anticancer activity in cholangiocarcinoma cell (KMCH-1). Artificial cells, nanomedicine, and biotechnology 2019, 47, 1610–1616. doi:10.1080/21691401.2019.1594860
  • Runowski, M.; Woźny, P.; Lavín, V.; Lis, S. Optical pressure nano-sensor based on lanthanide doped SrB2O4:Sm2+ luminescence – Novel high-pressure nanomanometer. Sensors and Actuators B: Chemical 2018, 273, 585–591. doi:10.1016/j.snb.2018.06.089
  • González-Fuenzalida, R.; Moliner-Martínez, Y.; Molins-Legua, C.; Campíns-Falcó, P. Miniaturized liquid chromatography coupled on-line to in-tube solid-phase microextraction for characterization of metallic nanoparticles using plasmonic measurements. A tutorial. Analytica chimica acta 2018, 1045, 23–41. doi:10.1016/j.aca.2018.07.073
  • Alunda, B. O.; Lee, Y. J.; Park, S. A simple way to higher speed atomic force microscopy by retrofitting with a novel high-speed flexure-guided scanner. Japanese Journal of Applied Physics 2018, 57, 6HJ02. doi:10.7567/jjap.57.06hj02
  • Oras, S.; Vlassov, S.; Berholts, M.; Lõhmus, R.; Mougin, K. Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces. Beilstein journal of nanotechnology 2018, 9, 660–670. doi:10.3762/bjnano.9.61

Patents

  • ROBINSON TOD EVAN; ARRUZA BERNABE; ROESSLER KENNETH GILBERT; BRINKLEY DAVID; LECLAIRE JEFFREY E. Debris removal from high aspect structures. US 11964310 B2, April 23, 2024.
  • EDINGER KLAUS; HERMANNS CHRISTIAN FELIX; SIELAFF TILO; OSTER JENS; BAUR CHRISTOF; KOMPANIIETS MAKSYM. Apparatus and method for removing a single particulate from a substrate. US 11886126 B2, Jan 30, 2024.
  • BUDACH MICHAEL; BAUR CHRISTOF; EDINGER KLAUS; BRET TRISTAN. Method and apparatuses for disposing of excess material of a photolithographic mask. US 11874598 B2, Jan 16, 2024.
  • BAUR CHRISTOF; BUDACH MICHAEL. Apparatus and method for examining and/or processing a sample. US 11592461 B2, Feb 28, 2023.
  • ROBINSON TOD EVAN; ARRUZA BERNABE; ROESSLER KENNETH GILBERT; BRINKLEY DAVID; LECLAIRE JEFFREY E. Debris removal in high aspect structures. US 11577286 B2, Feb 14, 2023.
  • BAUR CHRISTOF; PIEPER HANS HERMANN. Method and apparatus for removing a particle from a photolithographic mask. US 11429020 B2, Aug 30, 2022.
  • ROBINSON TOD EVAN; ARRUZA BERNABE; ROESSLER KENNETH GILBERT; BRINKLEY DAVID; LECLAIRE JEFFREY E. Debris removal from high aspect structures. US 11391664 B2, July 19, 2022.
  • BAUR CHRISTOF; BUDACH MICHAEL. Apparatus and method for examining and/or processing a sample. US 11262378 B2, March 1, 2022.
  • EDINGER KLAUS; OSTER JENS; HERMANNS CHRISTIAN FELIX; BAUR CHRISTOF; SIELAFF TILO; KOMPANIIETS MAKSYM. Vorrichtung und Verfahren zum Entfernen eines einzelnen Partikels von einem Substrat. DE 102020208568 A1, Jan 13, 2022.
  • ROBINSON TOD EVAN; ARRUZA BERNABE; ROESSLER KENNETH GILBERT; BRINKLEY DAVID; LECLAIRE JEFFREY E. Debris removal in high aspect structures. US 11040379 B2, June 22, 2021.
  • BAUR CHRISTOF; BUDACH MICHAEL. Vorrichtung und Verfahren zum Untersuchen und/oder zum Bearbeiten einer Probe. DE 102018210098 A1, Dec 24, 2019.
  • BAUR CHRISTOF; PIEPER HANS HERMANN. METHOD AND APPARATUS FOR REMOVING A PARTICLE FROM A PHOTOLITHOGRAPHIC MASK. WO 2019206614 A1, Oct 31, 2019.
  • BAUR CHRISTOF; PIEPER HANS HERMANN. Verfahren und Vorrichtung zum Entfernen eines Partikels von einer photolithographischen Maske. DE 102018206278 A1, Oct 24, 2019.
  • BUDACH MICHAEL; BAUR CHRISTOF; EDINGER KLAUS; BRET TRISTAN. METHOD AND APPARATUSES FOR DISPOSING OF EXCESS MATERIAL OF A PHOTOLITHOGRAPHIC MASK. WO 2019016224 A1, Jan 24, 2019.
Other Beilstein-Institut Open Science Activities