Functional morphology, biomechanics and biomimetic potential of stem–branch connections in Dracaena reflexa and Freycinetia insignis

Tom Masselter, Sandra Eckert and Thomas Speck
Beilstein J. Nanotechnol. 2011, 2, 173–185. https://doi.org/10.3762/bjnano.2.21

Supporting Information

Supporting Information File 1: Three-dimensional arrangement and course of fibrous bundles in a branch–stem-junction of Dracaena reflexa.
Format: ZIP Size: 5.3 MB Download

Cite the Following Article

Functional morphology, biomechanics and biomimetic potential of stem–branch connections in Dracaena reflexa and Freycinetia insignis
Tom Masselter, Sandra Eckert and Thomas Speck
Beilstein J. Nanotechnol. 2011, 2, 173–185. https://doi.org/10.3762/bjnano.2.21

How to Cite

Masselter, T.; Eckert, S.; Speck, T. Beilstein J. Nanotechnol. 2011, 2, 173–185. doi:10.3762/bjnano.2.21

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mylo, M. D.; Hofmann, M.; Balle, F.; Beisel, S.; Speck, T.; Speck, O. Biomechanical Study of the Parasite-Host Interaction of the European Mistletoe. Journal of experimental botany 2021, 73, 1204–1221. doi:10.1093/jxb/erab518
  • Malik, S.; Marchesan, S. Growth, Properties, and Applications of Branched Carbon Nanostructures. Nanomaterials (Basel, Switzerland) 2021, 11, 2728. doi:10.3390/nano11102728
  • Mannai, F.; Elhleli, H.; Dufresne, A.; Elaloui, E.; Moussaoui, Y. Opuntia (Cactaceae) Fibrous Network-reinforced Composites: Thermal, Viscoelastic, Interfacial Adhesion and Biodegradation Behavior. Fibers and Polymers 2020, 21, 2353–2363. doi:10.1007/s12221-020-9675-4
  • De Vivo, L.; Matsushita, A. K.; Kupor, D.; Luna, J.; Tierra, B. A.; Sah, R. L.; Lubarda, V. A.; Meyers, M. A.; McKittrick, J.; Krysl, P.; Kuester, F. Cholla cactus frames as lightweight and torsionally tough biological materials. Acta biomaterialia 2020, 112, 213–224. doi:10.1016/j.actbio.2020.04.054
  • Bunk, K.; Krassovitski, S.; Speck, T.; Masselter, T. Branching morphology and biomechanics of ivy (Hedera helix) stem-branch attachments. American journal of botany 2019, 106, 1143–1155. doi:10.1002/ajb2.1341
  • Nelson, N.; Stubbs, C. J.; Larson, R.; Cook, D. D. Measurement accuracy and uncertainty in plant biomechanics. Journal of experimental botany 2019, 70, 3649–3658. doi:10.1093/jxb/erz279
  • Shtein, I.; Koyfman, A.; Eshel, A.; Bar-On, B. Autotomy in plants: organ sacrifice in Oxalis leaves. Journal of the Royal Society, Interface 2019, 16, 20180737. doi:10.1098/rsif.2018.0737
  • Masselter, T.; Bold, G.; Thielen, M.; Speck, O.; Speck, T. Bioinspired Materials Science and Engineering; Wiley, 2018; pp 251–266. doi:10.1002/9781119390350.ch13
  • Hesse, L.; Leupold, J.; Speck, T.; Masselter, T. A qualitative analysis of the bud ontogeny of Dracaena marginata using high-resolution magnetic resonance imaging. Scientific reports 2018, 8, 9881. doi:10.1038/s41598-018-27823-1
  • Speck, T.; Bold, G.; Masselter, T.; Poppinga, S.; Schmier, S.; Thielen, M.; Speck, O. Biomechanics and Functional Morphology of Plants—Inspiration for Biomimetic Materials and Structures. Plant Biomechanics; Springer International Publishing, 2018; pp 399–433. doi:10.1007/978-3-319-79099-2_18
  • Shah, D. U.; Reynolds, T.; Ramage, M. H. The strength of plants: theory and experimental methods to measure the mechanical properties of stems. Journal of experimental botany 2017, 68, 4497–4516. doi:10.1093/jxb/erx245
  • Bunk, K.; Fink, S.; Speck, T.; Masselter, T. Branching morphology, vascular bundle arrangement and ontogenetic development in leaf insertion zones and ramifications of three arborescent Araliaceae species. Trees 2017, 31, 1793–1809. doi:10.1007/s00468-017-1585-8
  • Born, L.; Jonas, F. A.; Bunk, K.; Masselter, T.; Speck, T.; Knippers, J.; Gresser, G. T. Branched Structures in Plants and Architecture. Biologically-Inspired Systems; Springer International Publishing, 2016; pp 195–215. doi:10.1007/978-3-319-46374-2_10
  • Masselter, T.; Haushahn, T.; Fink, S.; Speck, T. Biomechanics of selected arborescent and shrubby monocotyledons. Beilstein journal of nanotechnology 2016, 7, 1602–1619. doi:10.3762/bjnano.7.154
  • Hesse, L.; Masselter, T.; Leupold, J.; Spengler, N.; Speck, T.; Korvink, J. G. Magnetic resonance imaging reveals functional anatomy and biomechanics of a living dragon tree. Scientific reports 2016, 6, 32685. doi:10.1038/srep32685
  • Masselter, T.; Hesse, L.; Böhm, H.; Gruhl, A.; Schwager, H.; Leupold, J.; Gude, M.; Milwich, M.; Neinhuis, C.; Speck, T. Biomimetic optimisation of branched fibre-reinforced composites in engineering by detailed analyses of biological concept generators. Bioinspiration & biomimetics 2016, 11, 055005. doi:10.1088/1748-3190/11/5/055005
  • Malik, S.; Nemoto, Y.; Guo, H.; Ariga, K.; Hill, J. P. Fabrication and characterization of branched carbon nanostructures. Beilstein journal of nanotechnology 2016, 7, 1260–1266. doi:10.3762/bjnano.7.116
  • Küppers, S.; Thumm, J.; Müller, L.; Ewert, D.; Gresser, G. T. Braiding of Branches for the Fibre Composite Technology. Materials Science Forum 2015, 825-826, 749–756. doi:10.4028/www.scientific.net/msf.825-826.749
  • Haushahn, T.; Speck, T.; Masselter, T. Branching morphology of decapitated arborescent monocotyledons with secondary growth. American journal of botany 2014, 101, 754–763. doi:10.3732/ajb.1300448
  • Masselter, T.; Haushahn, T.; Schwager, H.; Milwich, M.; Müller, L.; Boehm, H.; Gude, M.; Gruhl, A.; Hufenbach, W.; Neinhuis, C.; Speck, T. FROM NATURAL BRANCHINGS TO TECHNICAL JOINTS: BRANCHED PLANT STEMS AS INSPIRATION FOR BIOMIMETIC FIBRE-REINFORCED COMPOSITES. International Journal of Design & Nature and Ecodynamics 2013, 8, 144–153. doi:10.2495/dne-v8-n2-144-153
Other Beilstein-Institut Open Science Activities