Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

Philipp Comanns, Christian Effertz, Florian Hischen, Konrad Staudt, Wolfgang Böhme and Werner Baumgartner
Beilstein J. Nanotechnol. 2011, 2, 204–214. https://doi.org/10.3762/bjnano.2.24

Supporting Information

Supporting Information File 1: Application of a 5 µl droplet of deionised water onto the venter of Moloch horridus.
Format: MPEG Size: 438.0 KB Download
Supporting Information File 2: Application of a 5 µl droplet of deionised water onto the back of Phrynocephalus arabicus.
Format: MPEG Size: 324.0 KB Download
Supporting Information File 3: Application of a 5 µl droplet of deionised water onto the back of Phrynosoma cornutum.
Format: MPEG Size: 420.0 KB Download
Supporting Information File 4: SEM-image of Moloch horridus and the corresponding epoxy replica. Clearly the general morphology as well as the honeycomb-like micro ornamentation are well reproduced.
Format: TIF Size: 535.3 KB Download
Supporting Information File 5: Application of 5 µl of deionised water onto a epoxy replica of the back of Phrynosoma cornutum.
Format: MPEG Size: 428.0 KB Download
Supporting Information File 6: Application of 5 µl deionised water onto the flat back side of the same replica as used in File 6.
Format: MPEG Size: 470.0 KB Download
Supporting Information File 7: Application of a 7 µl droplet of coloured deionised water onto the venter of Moloch horridus.
Format: MPEG Size: 1.3 MB Download
Supporting Information File 8: Application of a 7 µl droplet of coloured deionised water onto the back of Phrynocephalus arabicus.
Format: MPEG Size: 1.1 MB Download
Supporting Information File 9: Application of a 7 µl droplet of coloured deionised water onto the back of Phrynosoma cornutum.
Format: MPEG Size: 1.8 MB Download
Supporting Information File 10: Semi-thin histological sections through the integument of Phrynosoma cornutum. Black: spaces of the capillary system, due to overlapping scales. Different dimensions and wall morphologies can be observed.
Format: TIF Size: 274.2 KB Download

Cite the Following Article

Moisture harvesting and water transport through specialized micro-structures on the integument of lizards
Philipp Comanns, Christian Effertz, Florian Hischen, Konrad Staudt, Wolfgang Böhme and Werner Baumgartner
Beilstein J. Nanotechnol. 2011, 2, 204–214. https://doi.org/10.3762/bjnano.2.24

How to Cite

Comanns, P.; Effertz, C.; Hischen, F.; Staudt, K.; Böhme, W.; Baumgartner, W. Beilstein J. Nanotechnol. 2011, 2, 204–214. doi:10.3762/bjnano.2.24

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Guo, Y.; Zhang, L.; Shen, C.; Liu, L.; Mo, R.; Wu, R.; Liu, H.; Yu, J. Industrial production of asymmetric wettability patterned fabric for efficient atmospheric water harvesting. Chemical Engineering Journal 2024, 501, 156911. doi:10.1016/j.cej.2024.156911
  • McIntyre, M. G.; van Mierlo, M.; Parker, M. R.; Goetz, S. M.; Taylor, E. N.; Boback, S. M. Rain-harvesting behavior in free-ranging prairie rattlesnakes (Crotalus viridis). Current Zoology 2024. doi:10.1093/cz/zoae069
  • Sammartino, C.; Pinchasik, B.-E. Liquid Zener diodes. Materials horizons 2024, 11, 4925–4931. doi:10.1039/d4mh00688g
  • Kahvecioğlu, B.; Mutlu Avinç, G.; Arslan Selçuk, S. Biomimetic Adaptive Building Façade Modeling for Sustainable Urban Freshwater Ecosystems: Integration of Nature's Water-Harvesting Strategy into Sun-Breakers. Biomimetics (Basel, Switzerland) 2024, 9, 569. doi:10.3390/biomimetics9090569
  • Wang, X.; Wei, H.; Luo, N.; Luo, H.; Zhou, X.; Qin, B.; Mei, Y.; Zhang, Y. Smart Materials and Micro/Nanoarchitectonics for Water Harvesting: From Fundamental Mechanism to Advanced Application. Composites Part A: Applied Science and Manufacturing 2024, 184, 108241. doi:10.1016/j.compositesa.2024.108241
  • Yamada, Y.; Oka, J.; Isobe, K.; Horibe, A. Effect of Droplet-Removal Processes on Fog-Harvesting Performance on Wettability-Controlled Wire Array with Staggered Arrangement. Langmuir : the ACS journal of surfaces and colloids 2024, 40, 16994–17000. doi:10.1021/acs.langmuir.4c01942
  • Wang, D.; Huang, H.; Min, F.; Li, Y.; Zhou, W.; Gao, Y.; Xie, G.; Huang, Z.; Dong, Z.; Chu, Z. Antigravity Autonomous Superwettable Pumps for Spontaneous Separation of Oil-Water Emulsions. Small (Weinheim an der Bergstrasse, Germany) 2024, 20, e2402946. doi:10.1002/smll.202402946
  • Trogadas, P.; Cho, J. I. S.; Rasha, L.; Lu, X.; Kardjilov, N.; Markötter, H.; Manke, I.; Shearing, P. R.; Brett, D. J. L.; Coppens, M.-O. A nature-inspired solution for water management in flow fields for electrochemical devices. Energy & Environmental Science 2024, 17, 2007–2017. doi:10.1039/d3ee03666a
  • Zhang, B.; Ramírez-Gómez, Á.; Wang, J.; Yuan, L. Bionic design of knitted fabrics for ice and snow sports. Textile Research Journal 2024, 94, 1470–1483. doi:10.1177/00405175241228526
  • Cui, Y.; Zheng, W.; Pu, H.; Xiong, J.; Liu, H.; Shi, Y.; Huang, X. Intertwisted Superhydrophilic and Superoleophilic Collagen Fibers Enabled Anti-Fouling High-Performance Separation of Emulsion Wastewater. Elsevier BV 2024. doi:10.2139/ssrn.4747833
  • Cervera Jiménez, J. A. Los misioneros católicos como mediadores científicos y filosóficos entre Europa y China: los casos de Juan Cobo y Matteo Ricci. Hispania 2023, 83, e030. doi:10.3989/hispania.2023.030
  • Wang, M.; Liu, E.; Jin, T.; Zafar, S.-U.; Mei, X.; Fauconnier, M.-L.; De Clerck, C. Towards a better understanding of atmospheric water harvesting (AWH) technology. Water research 2023, 250, 121052. doi:10.1016/j.watres.2023.121052
  • Li, Y.; Jing, L.; Little, J. M.; Yang, H.; Chung, T.-C.; Chen, P.-Y. Mechanically driven assembly of biomimetic 2D-material microtextures with bioinspired multifunctionality. Nano Research 2023, 17, 663–678. doi:10.1007/s12274-023-6220-y
  • Zhang, W.; Ji, Q.; Zhang, G.; Gu, Z.; Wang, H.; Hu, C.; Liu, H.; Ren, Z. J.; Qu, J. Pumping and sliding of droplets steered by a hydrogel pattern for atmospheric water harvesting. National science review 2023, 10, nwad334. doi:10.1093/nsr/nwad334
  • Yenmiş, M.; Ayaz, D.; Sherbrooke, W. C.; Veselý, M. Comparative analyses of micro‐ and macro‐scale surface structures in the convergent evolution of rain‐harvesting behaviour in lizards. Journal of Zoology 2023, 322, 58–75. doi:10.1111/jzo.13123
  • Ahmad, M.; Nighojkar, A.; Plappally, A. A review of the methods of harvesting atmospheric moisture. Environmental science and pollution research international 2023, 31, 10395–10416. doi:10.1007/s11356-023-30727-x
  • Yang, J.-L.; Song, Y.-Y.; Zhang, X.; Zhang, Z.-Q.; Cheng, G.-G.; Liu, Y.; Lv, G.-J.; Ding, J.-N. Research progress of bionic fog collection surfaces based on special structures from natural organisms. RSC advances 2023, 13, 27839–27864. doi:10.1039/d3ra04253g
  • Lu, Y.; Yan, D.; Lin, J.; Zhang, S.; Song, J. Spontaneous Directional Transportation Surface of Water Droplet and Gas Bubble: A Review. Applied Sciences 2023, 13, 9961. doi:10.3390/app13179961
  • Do, Y.; Ko, M.; Lee, Y. K. Impact of surface cooling on the water harvesting efficiency of nanostructured window glass. RSC advances 2023, 13, 22325–22334. doi:10.1039/d3ra03433j
  • Rostami, S.; Ghaffarkhah, A.; Isari, A. A.; Hashemi, S. A.; Arjmand, M. 2D nanomaterial aerogels integrated with phase change materials: a comprehensive review. Materials Advances 2023, 4, 2698–2729. doi:10.1039/d3ma00049d

Patents

  • STELTENKAMP SIEGFRIED; OPHARDT HEINER; LANG ALBRECHT. Method of identifying biologic particles. US 12031895 B2, July 9, 2024.
  • COMANNS PHILIPP; BAUMGARTNER WERNER PROF; BERNHARDT FRANK; WINANDS KAI; ARNTZ KRISTIAN. DEVICE FOR CAPILLARY TRANSPORT OF LIQUIDS, USE AND METHOD OF THE PRODUCTION OF SUCH A DEVICE. EP 2880314 B1, Sept 28, 2016.
Other Beilstein-Institut Open Science Activities